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ABSTRACT 
 
 

Mathematical thinking is in high demand in the global market, but compared to their 

international peers, U.S. school children fail to meet math performance benchmarks. This is 

especially problematic, given that early math skills predict later success in math and reading, 

beyond the effects of early reading skills and that math difficulties prior to formal schooling 

make it unlikely that children who start off behind will catch up. The home math environment 

(HME), which includes all math-related activities, attitudes, expectations, resources, and 

interactions between parents and children in the home, provides a potentially promising way to 

promote children’s early math development. In order to understand the role played by the HME 

in children’s math abilities, the a pre-registered meta-analysis was conducted to estimate the 

average weighted correlation coefficient, r between the HME and children’s math achievement 

and the sample, assessment, and study features that contribute to study heterogeneity. A 

multilevel correlated effects model was run on 51 studies and a total of 456 effect sizes, which 

found a positive, significant average weighted correlation of r = .14, p < .0001. Although the 

association found was low in magnitude, our combined sensitivity analyses showed that the 

present findings were robust, and that the sample of studies has evidential value. Interestingly, 

moderator analyses revealed that all moderators tested contributed to study heterogeneity and 

when the HME component moderation analyses were run, no significant between-study 

heterogeneity remained. 

Keywords: home math environment; math; meta-analysis 
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CHAPTER 1 
 

INTRODUCTION 
 

The Home Math Environment and Math Achievement: A Meta-Analysis 

In an age when mathematical thinking has become integral to sustaining a competitive 

advantage in the global market, a critical national concern is the failure of U.S. school children to 

meet the same math performance benchmarks as their international peers (Provasnik Kastberg, 

Ferraro, Lemanski, Roey, & Jenkins, 2012). Given that math achievement deficits already exist 

at the onset of formal schooling, and children who start off behind in school are unlikely to catch 

up to their peers (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Jordan, Kaplan, Locuniak, & 

Ramineni, 2007), school-based instructional efforts to improve math outcomes are likely not 

enough. Alongside research that has found a strong association, even beyond the effects of social 

class, between general home learning activities and student achievement (Bus, Van IJzendoorn, 

& Pellegrini, 1995; Kellaghan, Sloane, Alvarez, & Bloom, 1993), evidence also shows that 

children’s early math knowledge develops when they have opportunities to engage with and talk 

about math in a playful, low-stakes manner (Cohrssen, Church, & Tayler, 2014). Thus, the home 

math environment (HME), which encompasses all math-related interactions among parents and 

children in the home, including informal board game playing, using words that compare 

magnitudes (i.e., “more” or “less”), and other low-stakes math-related exchanges, may provide a 

promising avenue for the development of children’s early math skills before school entry.  

Practical Significance of the HME 

In terms of school success, early math skills have been shown to play a vital role in academic 

achievement. In fact, early math skills not only strongly predict later math achievement (Duncan 

et al., 2007) but have also been shown to predict later reading achievement more strongly than do 
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early reading skills (Duncan & Magnuson, 2011). However, in comparison to research on the 

home literacy environment (HLE), research on the HME is much less abundant (e.g., Senechal & 

LeFevre, 2002). Given the confluence of evidence on the importance of the HLE in children’s 

literacy skill development before school entry, it is reasonable to expect that variations in home 

math experiences may also be driving the large differences in children’s early math skills prior to 

formal schooling (Aunola et al., 2004; Evans & Shaw, 2008; Huntsinger et al., 2016; Phillips, 

Norris, & Anderson, 2008; Senechal & LeFevre, 2002). Nevertheless, the role of the HME in 

children’s math achievement remains unclear, with reported correlations between the HME and 

children’s math achievement ranging from small to large and positive to negative. 

HME Definitions 

One of the problems that may be driving inconsistencies in the HME literature is the lack of 

agreement on how the HME should be defined. A common thread among the many 

conceptualizations of the HME is their emphasis on parent involvement with math (e.g., Niklas 

& Schneider, 2013), but there is no consensus on the specific components that ought to be used 

to capture this parent involvement. Overall, research examining the home influences on 

children’s math achievement have ranged from single-factor definitions of the HME to a wide 

variety of multi-component definitions that include many different combinations of components, 

like explicit instructional activities involving math, everyday activities that incidentally involve 

math, math-related resources, like board games and number books, parent math talk, and parent 

affective factors and beliefs related to math, like math attitudes (e.g., math anxiety) and math 

achievement expectations (Benavides-Varela et al., 2016; Ciping, Silinskas, Wei, & Georgiou, 

2015; Kleemans, Segers, & Verhoeven, 2015; del Rio et al., 2017; LeFevre et al., 2009; LeFevre, 

Polyzoi, Skwarchuk, Fast, & Sowinski, 2010; Ramani, Rowe, Eason, & Leech, 2015). Given that 
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there is a wide array of home-based factors potentially encompassed by the HME, and the HME 

has been defined differently among different research areas and studies, it is not surprising that 

the findings on the association between the HME and child math achievement are also 

inconsistent (e.g., Blevins-Knabe, 2000; Ciping et al., 2015; Huntsinger, Jose, & Luo, 2016).  

Across many empirical studies on the HME, the HME has been operationalized narrowly, 

encompassing only the (purposefully- and incidentally-) math-related activities that parents and 

children share in the home, but more recent empirical work has expanded the way the HME is 

defined to also incorporate parental cognitions about math (Skwarchuk et al., 2009; Skwarchuk, 

Sowinski, & LeFevre, 2014). Parental cognitions include parents’ math-related attitudes (i.e., 

math anxiety, math importance), as well as parents’ expectations for their children’s math 

achievement and have been shown to directly influence parenting practices as well as children’s 

math attitudes and outcomes (Cheung, Yang, Dulay, & McBride, 2017; del Rio, Susspereguy, 

Strasser, & Salinas, 2017; Kleemans, Peeters, Segers, & Verhoeven, 2012; Taylor, Clayton, & 

Rowley, 2004). Importantly, compared to other forms of parent involvement, parental aspirations 

and/or expectations have been shown by meta-analytic work to have the strongest association 

with children’s academic achievement (Fan & Chen, 2001). Moreover, according to Eccles’ 

Theory of Parent Socialization, parental attitudes work as an important social reinforcer of 

children’s beliefs about their (math) abilities and math, in general, which in turn, impact 

children’s academic (i.e., math) performance overall (Eccles, Jacob, & Harold, 1990). Thus, 

parent math-related attitudes and expectations are an important consideration when measuring 

the influence of the HME on children’s math achievement. 

One more line of inquiry that has emerged in the study of home and parental influences 

on children’s math achievement, which has not traditionally been conceptualized as part of the 
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HME, is parent number talk, or “parent math talk”. Parent math talk refers to parent utterances of 

number words (i.e., one, two) and words related to magnitude comparisons (i.e., more, less; 

Gunderson & Levine, 2011; Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010). 

Although the amount and frequency of math talk parents engage in with their children has been 

shown to predict children’s later math achievement (Levine et al., 2010), investigations of parent 

math talk in the home have yet to be combined with traditional HME studies that focus on math-

related activities, attitudes, and expectations in the home. This is surprising, given that all these 

math-related influences are present in the home environment at once, and are likely exercising a 

significant influence on the math-related social interactions between parents and children. In 

light of this evidence, the current meta-analysis was conducted with a comprehensive definition 

of the HME that combined parent- child math activities as well as parent math attitudes, parent 

math expectations, and parent math talk. Importantly, this will allow us to more fully capture the 

HME and empirically test whether math talk is related to children’s math achievement across 

studies.  

Theoretical Basis of the Link Between the HME and Children’s Math Achievement 

A large body of research on the development of mathematical knowledge shows that 

numerical ability develops from infancy through adolescence (e.g., Geary, 1994). This math 

development spans from the innate numeracy skills we are born with and to formal school-based 

math learning. In between innate math skills and the math skills children learn in school, another 

mechanism for math skill development to consider is home-based math learning. In fact, the 

HME represents a setting in which many interacting influences converge to affect children’s 

outcomes, including children’s individual characteristics, environmental factors 

(Bronfenbrenner, 1979), social interactions (Vygotsky, 1978), and cultural influences (Bornstein 
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& Cheah, 2006).  

In line with the view that environments help shape children’s development, 

Bronfenbrenner’s bioecological systems theory (1979) proposes that children’s academic 

achievement and social development are joint functions of children’s individual characteristics 

and their interactions with two levels of contextual influences—proximal and distal. Proximal 

contexts directly involve the child, like his/her home, family, and early childhood programs, and 

distal contexts are those that indirectly involve a child, like his/her parents’ workplace. In this 

framework, the HME represents a proximal microsystem, in which parents directly influence 

their children’s math skill development through the provision of math-related activities, attitudes, 

utterances, and resources within the home. In turn, children’s math abilities also exercise a 

complimentary effect on their math-related home environmental influences. Thus, the HME 

represents a setting that captures the bioecological interaction between children’s math skills and 

their math-related home environment, which is likely to directly influence children’s math 

achievement. 

One mechanism by which the HME may exercise a direct influence on children’s math 

achievement is through parent-child social interactions within the home. According to 

Vygotsky’s sociocultural learning theory (1978), children’s cognitive abilities develop through 

social interactions with more experienced partners, which push children toward an upper 

boundary of ability that they could not reach on their own. Within the HME, these social 

interactions may include parent-child math-related activities and utterances as well as the 

socialization of math attitudes through talking about feelings toward math and expectations for 

children’s achievement in math. As such, the math-related social exchanges that parents share 

with their children as part of the HME may lead to a level of math learning that surpasses what 
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children could achieve without such math-related interactions. It stands to reason that the social 

exchanges within the HME may be partially driving the differences in math ability found in 

young children prior to formal schooling (Aunola et al., 2004). Thus, the present meta-analysis 

will directly investigate the influence of the different kinds of social interactions within the HME 

in order to examine the association of HME interactions with children’s math achievement. 

An important over-arching influence on the individual, social, and environmental factors 

within the HME is culture. In fact, within the HME, culture drives variations in physical and 

social settings, as well as in child-rearing customs and practices (i.e., frequency of interaction), 

and in the psychology of caregivers (i.e., level of strictness versus nurturing; Harkness & Super, 

2002). According to Bornstein and Cheah’s (2002) conceptualization of the home environment, 

the HME represents a developmental niche in which culture shapes the beliefs, attitudes, and 

values parents pass on to their children about math, which in turn, impact how children’s math-

related knowledge and abilities develop. Thus, the HME may represent a vital context in which 

many influences on children’s math development converge to impact their math achievement. 

Given the environmental, social, and cultural influences captured by the HME, a statistical 

examination of the role of the HME in children’s math achievement is an important empirical 

question. 

Study Aims 

In response to the lack of consensus on how the HME is measured and defined, and the 

inconsistent findings in the literature on the magnitude and direction of the relation between the 

HME and children’s math achievement, the current, pre-registered meta-analysis was conducted 

to synthesize all available empirical evidence on the HME-math achievement relationship in 

order to accomplish two over-arching goals. We preregistered the design, research questions, 
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moderators, and analysis plan of this systematic review with Prospero under the title “A meta-

analysis on the relation between the home math environment and children’s math achievement” 

and the registration number CRD42018099626. Our first study aim was to combine all previous 

studies conducted on the association between the HME and children’s math achievement in order 

to utilize the statistical power of a combined sample of empirical studies to calculate the average 

weighted correlation between the two constructs. Our second study aim was to empirically test a 

range of potential moderator variables that may influence the strength of the relation between the 

HME and children’s math achievement in order to determine the between-study sample, 

measure, and study characteristics that contribute to the differences found across studies. 

Literature Review 

We first consider the existing literature that links the HME to children’s math achievement. 

Following that, we examine a range of potential moderator variables that may influence the 

relation between the HME and children’s math achievement.  

Inconsistent Findings on the Association Between HME and Children’s Math Achievement 

Overall, previous work examining the relation between the HME and children’s math 

achievement has yielded inconsistent findings on the magnitude and direction of their 

association. A number of studies have found a positive and significant correlation between the 

HME and math achievement in children ranging from pre-school to elementary school, whether 

math was measured concurrently or longitudinally (Benavides-Varela et al., 2016; Dearing et al., 

2012; del Rio et al., 2017; Hart et al., 2016; Huntsinger et al., 2016; Kleemans et al., 2012; 

Kleemans et al., 2013; LeFevre et al., 2009, 2010; Manolitsis, Georgiou, & Tziraki, 2013; 

Niklas, Cohrssen, & Tayler, 2016; Segers et al., 2015; Skwarchuk et al., 2014). For example, a 

handful of studies that included parents’ home numeracy activities and parent numeracy 
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expectations in their definition of the HME found that each component uniquely predicted 

children’s math achievement across a spectrum of early numeracy skills, in cases where math 

was assessed on standardized or unstandardized tests (del Rio et al., 2017; LeFevre et al., 2010; 

Kleemans et al., 2012, 2013; Niklas et al., 2016; Segers et al., 2015). Thus, despite differences in 

the studies’ sample age, math assessments used, or conceptualization of the HME, the 

association between the HME and children’s math achievement was still found to be positive and 

significant.  

Conversely, many studies have also found either a negative or non-significant association 

between the HME and children’s math achievement (Ciping et al., 2015; Huntsinger et al., 2016; 

Missall, Hojnoski, Caskie, & Repasky, 2015). Negative associations with children’s math 

achievement have been found across a variety of samples (i.e., different countries of origin), 

math assessments (i.e., timed versus untimed), and HME components (i.e., activities that target 

math on purpose versus incidentally; Ciping et al., 2015; Huntsinger et al., 2016). The same 

diversity of study characteristics holds true for null findings in the association between the HME 

and children’s math achievement. Indeed, null findings have been found with math assessed 

using a variety of school readiness and numeracy skill measures, and with diverse sample 

characteristics (i.e., low SES, ethnic minority preschoolers or middle school children; Leyva et 

al., 2017; Missall et al., 2015). It may be the case that the negative and non-significant findings 

for the association between the HME and children’s math achievement are an issue of 

directionality. Specifically, it may be the case that children struggling with math are more likely 

to need help with math, and thus share more math-related interactions with their parents at home 

(Ciping et al., 2015). Indeed, parents may intentionally focus on more basic skills when their 

children struggle to meet developmental math demands (Saxe, Guberman, & Gearhart, 1987). No 
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matter what is driving these conflicting findings, there is more work to be done to understand 

why the association that exists between the HME and children’s math achievement is so variable 

between studies. As such, the moderator analyses conducted in the current study will enable us to 

statistically test for and pinpoint the study characteristics that are driving between-study 

variability. 

Potential Moderators of the HME-Children’s Math Achievement Link 

A number of factors may have contributed to the inconsistent findings in previous research 

on the HME and children’s math achievement. These factors include sample characteristics—

country of origin, age, grade, and special population characteristics, HME assessment methods—

the HME component(s) measured, the category of the HME component measured (i.e., attitude, 

activity, or math talk), and how the HME score was calculated, math assessment methods—the 

math assessment used, the math domain measured, and whether or not the math measure was 

symbolic, timed, standardized, or a composite, or study characteristics—whether or not the study 

was longitudinal. Table 1 shows the specific coding scheme for all moderators included in the 

moderator analyses.  

Sample Characteristics. 

Age and grade. In an effort to capture the effects of the HME prior to formal schooling, the 

majority of HME research has been conducted on preschool and kindergarten samples. However, 

recent work on age-related differences in the HME has shown that more advanced HME 

activities are correlated with older children’s, but not younger children’s, math performance 

(Thompson, Napoli, & Purpura, 2017). This may indicate that the role of the HME in children’s 

math achievement may differ depending on the age of the sample, with more advanced activities 

being more important for older children’s math performance and more basic activities being 
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more important for younger children’s math performance. However, given that basic HME 

activities were not related to younger or older children’s math achievement, when SES was 

controlled for, the expected pattern of results was not supported. Moreover, both younger and 

older samples have shown both positive and negative correlations between the HME and 

children’s math achievement, further indicating that age-related differences in the association 

between the HME and children’s math achievement do not follow a predictable pattern (Ciping 

et al., 2015; LeFevre et al., 2009; Pezdek et al., 2002). Given that there appears to be no clear 

direction for the potential moderating effect of age, moderator analyses will be conducted for 

both age and grade to figure out how age and grade may influence the correlation between the 

HME and children’s math achievement. 

Country of origin. Cross-country work has shown parent attitudes and practices directly 

influence children’s math performance and that parent achievement attitudes and practices differ 

depending on the parents’ birth country (LeFevre et al., 2010; Huntsinger et al., 2016; Missall et 

al., 2015). For example, previous work has found that, comparatively, Chinese-American and 

Taiwanese parents are more likely to engage with their children in formal math activities and do 

so when their children are younger than their European-American counterparts (Huntsinger, 

Jose, Liaw, & Ching, 1997). Based on these findings, and the influence of culture on individual, 

environmental, and social factors in the home environment (Bornstein & Cheah, 2002), we 

included the study sample’s country of origin as a potential moderator of the relation between the 

HME and children’s math achievement. Specifically, we expect Asian countries to have higher 

magnitude correlations between the HME and children’s math achievement than European 

countries and the United States, based on Asian countries’ cultural focus on parent involvement, 

especially in the form of academic expectations (Huntsinger, Jose, Larson, Krieg, & Shaligram, 
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2000). 

Special sample characteristics. Given that math achievement differences, which coincide 

with differences in socioeconomic status, race/ethnicity, and gender are evident in young 

children, even before the onset of formal schooling (Aunola et al., 2004; Gibbs, 2010; National 

Mathematics Advisory Panel, 2008), it is reasonable to expect that qualitative differences in the 

home environment between children of different genders, socioeconomic, and/or ethnic 

backgrounds, or other defining characteristics may be contributing to the differences found in 

children’s math development (i.e., SLI; Baker, 2015; Cheung et al., 2017; Kleemans et al., 

2013). In fact, both gender- and SES-based math achievement gaps have been found, with high 

SES samples and boys tending to perform better (Wei, Lenz, & Blackorby, 2013), which may 

also be an indication that the math achievement of high SES children and boys is more positively 

impacted by or closely related to the HME. Thus, in an effort to capture the impact of sample 

characteristics on the association between the HME and children’s math achievement, we 

conducted moderator analyses for the special sample characteristics that varied between studies 

on the HME-math achievement relation.  

Assessment Characteristics. 

HME assessment: component measured and score calculation method used. As 

previously discussed, one of the most common differences among studies examining the HME 

and children’s math achievement is the way researchers operationalize the HME. The most 

common components used to capture the HME include parents’ math-related cognitions (i.e., 

attitudes and/or expectations), math-related activities shared between parents and children, or 

some combination of the two. Surprisingly, even though it represents another home-based 

mechanism of math-related social learning, parent math talk tends to be excluded from 
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traditional HME definitions and studied as a separate line of research. In an effort to bring 

together HME research on parent math talk and more traditional HME research on parent math 

attitudes and activities under one HME umbrella, the present meta-analysis combined studies 

from both previously separate research literatures in order to calculate an average effect size that 

is based on a more comprehensive snapshot of the HME. 

We also accounted for more fine-grained differences across HME definitions. These 

differences included whether direct math activities, indirect math activities, a combination of 

direct and indirect math activities, spatial activities, math expectations, math attitudes and/or 

beliefs, math talk, or a combination of math-related activities and attitudes and/or beliefs or 

expectations, or some other combination of two HME components was measured. Based on 

previous HME work showing that, even when children’s math achievement is measured with the 

same math assessment or within the same math domain, different magnitude correlations are still 

found between the HME and children’s math achievement when different aspects of the HME 

are measured (Skwarchuk et al., 2014; Thompson et al., 2017), we expect the HME component 

measured to be a significant moderator on the association between the HME and children’s math 

achievement. Specifically, we expect effect sizes that measure the HME as indirect math 

activities or math attitudes and/or beliefs to have lower magnitude correlations with children’s 

math achievement than those that measure direct HME activities (Huntsinger et al., 2016; Jacobs 

& Harvey, 2005). In addition, based on findings from seminal studies in the HME literature as 

well as meta-analytic work, we expect correlations that include the HME category of parent math 

expectations to have the highest magnitude correlations with children’s math achievement 

compared to all other HME components (Fan & Chen, 2001; Skwarchuk et al., 2014). 

Another way in which HME operationalizations differ is in the method used to calculate 
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HME scores. Many studies utilize exploratory factor analyses to create one or more latent factors 

representing the HME, but other studies utilized sum or average scores from the HME 

assessment items, or simply analyzed single HME questions. Based on the reduction in 

measurement error provided by latent factors in comparison to measured variables (Gayán & 

Olson, 2003), we expect to find higher magnitude correlations when the HME is measured as a 

latent factor, rather than either of the other two methods mentioned. Thus, we will test whether 

the HME category measured, the HME component measured, or the method used to calculate the 

HME score significantly moderates the association between the HME and children’s math 

achievement. 

Math assessment: assessment, domain (un)timed, (un)standardized, composite or 

single measure. The math achievement literature consistently shows that math ability is made up 

of many component skills that are related yet distinct (e.g., Purpura & Ganley, 2017). 

Accordingly, the majority of the research on the HME and children’s math achievement has 

investigated a wide array of math skills and spatial skills (e.g., Dearing et al., 2012; Thompson et 

al., 2017). However, most HME research is conducted in young children, leading the majority of 

studies on the HME-math achievement link to be focused on informal numeracy skills, which 

can be grouped under the overarching categories of numbering, relations, and arithmetic 

operations (NRC, 2009; Purpura & Lonigan, 2013). Numbering refers to understanding of the 

rules and processes associated with counting, including verbal counting, counting errors, one-to-

one correspondence, cardinality, subitizing, and estimation (Purpura & Lonigan, 2013). 

Numerical relations refers to understanding of the ways two symbolic numbers may be 

associated, including quantity comparison, number comparison, number naming, ordinality, and 

number line sequencing (Purpura & Lonigan, 2013). Finally, arithmetic operations refers to 
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knowledge of the ways sets and subsets of numbers can be created and decomposed, including 

addition, subtraction, and other forms of combining numbers (Purpura & Lonigan, 2013). Based 

on evidence that different kinds of home math experiences significantly predict some math skill 

domains but not others (e.g., Benavides-Varela et al., 2016; LeFevre et al., 2009), and the 

majority of studies showing that the direction, strength, and significance of the association 

between the same HME component and children’s math achievement differs between math 

domains (i.e., Dearing et al., 2012; Kleemans et al., 2013; Huntsinger et al., 2016; Missall et al., 

2013; Yildiz et al., 2018), we believed that the math domain measured may be driving the 

different correlations found between the HME and children’s math achievement.  For example, 

the negative association between the HME and children’s spatial skills may be attributable to 

measuring the spatial skills domain, rather than any differences in the HME measurement (e.g., 

Susperreguy et al., 2018; Zippert & Rittle-Johnson, 2018). However, since some studies have 

also found evidence to the contrary, with correlations of similar magnitudes between the HME 

and children’s math achievement across different math domains (Vukovic et al., 2013), we tested 

whether math domain was a significant moderator of the association between the HME and 

children’s math achievement directly. In order to ensure that the potential differences found were 

attributable the math domain being measured, and not to the specific math assessment, we also 

accounted for the math assessment used as well as a number of specific assessment 

characteristics.  

Moderator analyses for specific math assessment characteristics, including whether the 

math assessment was symbolic, non-symbolic, or both, standardized or unstandardized, timed, 

untimed, or both, or whether math achievement was assessed using a composite or single 

measure were also run. These characteristics were chosen based on the math assessment features 
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that were found to vary most frequently between HME studies, and based on etiological 

differences found in genetically-sensitive literature (Hart, Petrill, Thompson, & Plomin, 2009; 

Petrill et al., 2012), which may indicate that different levels of environmental input are present in 

the HME based on different math assessment features. Thus, we also tested whether the math 

assessment used and its assessment features moderated the correlation between the HME and 

children’s math achievement. 

Study Characteristics.  

Study characteristics: longitudinal. Whether or not a study captured longitudinal (at 

different time points) or concurrent (at the same time point) relations between the HME and 

children’s math achievement may also moderate the correlation found. Specifically, it is possible 

that the HME has a stronger relation with math achievement depending on whether math was 

assessed concurrently or later on (i.e., a year or two later). For example, the benefits conferred by 

the HME for children’s math achievement may weaken over time (Manolitsis et al., 2013). On 

the other hand, the effects of the HME may take time to be reflected in children’s math 

performance, resulting in stronger effect sizes for longitudinal associations compared to studies 

that measure the HME and children’s math achievement concurrently. Given this possibility, we 

will account for whether or not a study included an effect size that captured longitudinal or 

concurrent relations in our moderator analysis.   
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CHAPTER 2 
 

METHODS 

Literature Search 

To begin, databases to be searched were chosen based on running a search (“home 

numeracy environment” AND parent* AND home) in EBSCO Discovery Science, a search tool 

that draws from all university-accessible databases, and annotating which databases came up in 

the results. Two expanders were added to this search, namely “also search within the full text of 

the articles” and “apply equivalent subjects.” The databases included: Education Source, 

Academic Search Complete, Education Full Text (H.W. Wilson), Social Sciences Citation Index, 

Academic OneFile, Education Resources Information Center (ERIC), Child Development & 

Adolescent Studies, MEDLINE (PubMed), MEDLINE (ProQuest), PsycARTICLES, PsycINFO 

(including PsycINFO Theses and Dissertations), and Social Sciences Full Text. All of these 

databases were searched one by one with the comprehensive search terms: ("home math 

environment" OR "math talk" OR home OR "home environment" OR "home learning" OR 

"home experience" OR "home numeracy" OR "informal learning environment" OR "home 

practices" OR "home activities") AND ("parent child interactions" OR "parent school 

relationship" OR "parent characteristics" OR "parent expectations" OR "parents as teachers" OR 

"parent student relationship" OR "parent child relations" OR "parent attitudes" OR "parent 

beliefs") AND ("number activities" OR "number skills" OR numeracy OR "early numeracy" OR 

math* OR "math skills" OR "math ability" OR "mathematical reasoning"). 

Next, additional databases were chosen by reviewing the databases listed on Florida State 

University’s library research guides for related topic areas in Psychology, Mathematics, 

Education, Early Childhood Education, and Family and Child Sciences. Based on these guides, 
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three additional databases were included: Educators Reference Complete, MathSciNet, Web of 

Science. In order to be as comprehensive as possible and capture the grey literature that may not 

be found in topic-specific databases, Google Scholar was also searched. 

Once the database searches were all conducted, the results were saved in RefWorks to be 

reviewed for inclusion in the present meta-analysis. First articles were excluded based on 

duplicates (which RefWorks automatically detects). Second, all non-duplicates were reviewed to 

determine whether studies met inclusionary criteria based on titles and abstracts, and in cases 

where it was necessary, a review of methods, tables, and/or full manuscripts was also conducted 

to determine whether inclusionary criteria were met.  

Once the final sample of articles was determined, reference lists were then reviewed in 

order to determine whether there were any articles cited by an included article that did not show 

up in the manual searches. The references were also reviewed to identify prominent authors in 

the area that had multiple publications or a seminal publication in the HME research area (i.e., a 

paper that was highly-cited, had methods that were highly replicated, or developed a frequently-

used HME measure). Then, the Google Scholar profiles of prominent authors in the area were 

reviewed to make sure all of their relevant work that was not included in the study sample from 

manual searching was captured. Finally, although Dissertations and Theses were included in the 

database search results (especially Google Scholar), and also directly captured by searching 

PsycINFO Theses and Dissertations, a p-curve analysis was conducted to statistically test for the 

presence of publication bias.  
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Inclusionary and Exclusionary Criteria 

To be included in the present meta-analysis, a primary study had to meet the following criteria: 

1. A study must have an operationally-defined HME measure. The HME must measure 

practices, attitudes, expectations, and/or beliefs that are math-specific separately from 

other achievement domains (e.g., literacy, science) or the study will be excluded. For 

example, a study that only used a general home learning environment measure (e.g., 

Casey et al., 2014; Crosone et al., 2010; Hindman et al., 2010; Foster et al., 2016; 

Galindo & Sheldon, 2012), without separating math-specific aspects, would not be 

included. Studies that measure home math talk (e.g., Ramani et al., 2015) and parent 

attitudes, beliefs, and/or expectations toward math (e.g., del Rio et al., 2017; Segers et al., 

2015) will also be included in our conceptualization of the HME, but only if they are 

math-specific. Informal home-based play activities that involve math, like video games, 

board games (e.g., Benavides-Varela et al., 2016; Huntsinger et al., 2016), and grocery 

games (e.g., Pezdek et al., 2002) will also be included as part of the HME under the 

category of indirect math activities. 

2.  A study must include at least one math-specific achievement measure that does not 

include other achievement domains (e.g., language skills, Keith & Lichtman, 1994) in 

order to enable us to isolate the effect of the HME on math achievement only. The math 

achievement measure can involve any assessment method, including parent-report of 

children’s math skills (Hart et al., 2016), and standardized (e.g., Blevins-Knabe & 

Musun-Miller, 1996; Cheung et al., 2017) and unstandardized (e.g., LeFevre et al., 2009; 

Skwarchuk et al., 2014) math tests. Studies that examine the HME but have no math 

achievement measure will be excluded (e.g., Anderson, 1997; Missall et al., 2017). 
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3. If a study reported more than one math achievement outcome, the same math 

achievement outcome at multiple time points, and/or has more than one component of the 

HME included, the multiple combinations of HME measure and math achievement 

measure will each be included as separate effect sizes. Then, the effect sizes will be 

pooled, while accounting for dependent effect sizes by using multilevel correlated effects 

models to control for study effects using R’s metafor package (Viechtbauer, 2010). 

4. If a study did not report the zero-order correlation between the HME and a math 

achievement outcome, did not report sufficient statistics to allow us to derive a zero-order 

correlation between the two, then the primary corresponding author of the study will be 

contacted via E-mail in an attempt to procure the missing information. If the author does 

not respond within two weeks or chooses not to provide the information we need, the 

study will be excluded. A consequence of this criterion is that only quantitative 

examining the HME-math achievement relation will be included from the present 

analysis and all qualitative studies will be excluded. 

Coding Procedures and Reliability 

For the present meta-analysis, we implemented a systematic process for identifying and 

coding the study results (i.e., Pearson correlation coefficient and corresponding sample size) and 

study descriptors (i.e., moderators) from the primary studies (outlined in Table 2). The coding  

was done in three phases by two authors of this article. The first “trial coding” phase began with 

discussion between the authors of this paper, as well as their graduate student advisors, which 

have expertise in the environmental and affective factors influencing math achievement and 

experience in meta-analysis, to create a tentative coding plan. Additionally, the instructor of a 

graduate-level meta-analysis course, who is an expert in meta-analytic methodology, was 
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consulted on the creation of the tentative coding plan (as well as the methodological choices 

outlined in the following sections) as part of a final assignment for class credit. In addition, 

coding features were amended and finalized based on the authors’ and their advisors’ reading of 

relevant articles in the research area.  

The initial coding phase also involved the coding of five primary studies by both coders, 

followed by a comparison of their coding consistency and discussion of any issues that needed 

clarification or verification. The inter-coder reliability had to be high (Cohen’s kappa equal to or 

greater than .75, Fleiss, 1981; Cicchetti & Sparrow, 1981) before moving onto the second phase. 

The second coding phase involved eliminating articles that were identified as irrelevant or did 

not meet the inclusionary criteria until the total sample of studies was finalized. As stated 

previously all articles were reviewed and excluded based on duplicates, followed by a review of 

titles and abstracts, and a then a final review of methods, table, and possibly full articles in order 

to determine if each study met inclusionary criteria.  

Coding Procedures. The coding scheme included: Author(s), year of publication, average 

grade of the sample, average age of the sample, country of origin of the sample, special 

population sample characteristics, HME assessment component, and calculation used, math 

assessment used, math domain assessed, whether or not the math assessment used was a 

standardized, timed, symbolic, or a composite, and whether or not the study was longitudinal 

(see Table 2). A column was also created to code for correlations that came from the same article 

and study sample (i.e., study ID). These final data were then imported into R, and all Pearson’s 

correlation coefficients, r, and the corresponding sample sizes, n, were used to calculate the 

corresponding Fisher’s Z and variance for each effect size using the escalc() function from R’s 
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metafor package. Then, Fisher’s z-transformed effect size was utilized for all subsequent 

analyses in R. 

Age and grade. Because children’s grades are not always translatable across countries 

(e.g., kindergarten starts a year later in Norway compared to the U.S.) and not all manuscripts 

report the age of their study sample, both grade and age were utilized to ensure more complete 

data and to more precisely capture the potential moderating effects of a child’s point in 

development on the relation between the HME and children’s math achievement. In cases where 

age or grade was not reported, just the sample feature that was reported in the manuscript was 

coded. In the cases where age or grade was reported as a range, the average was calculated and 

subsequently used. Specifically, grade was coded as 1 = preschool and/or kindergarten (PK/KG), 

2 = a combination of PK/KG and elementary school, 3 = elementary school, 4 = a combination 

of elementary and middle school, and 5 = middle school. The grade categories were named 

according to the United States school system. Thus, elementary school included grades 1 through 

5, and middle school included grades 6-8. 

Special sample characteristics. Specifically, we coded the sample as 1 = average or 

typically-developing, 2 = low SES (30% or more of sample low SES), 3 = high minority (30% or 

more of sample made up of Non-white, minority participants), 4 = all one ethnicity (75% or more 

of sample from one country or ethnic origin), 5 = all girls (100% of sample), 6 = all boys, (100% 

of sample), 7 = sample with Specific Language Impairment (30% or more of sample made up of 

SLI participants), 8 = had some other special selection criterion, or 9 = high SES (30% or more 

of sample high SES).  
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HME component. The HME component was coded as 2 = direct activities, 3 = indirect 

activities, 4 = attitudes and/or beliefs, 5 = math expectations , 6 = spatial activities, 7 = math talk, 

9 = direct and indirect activities, and 11 = combination of activities and attitudes and/or beliefs 

or expectations. Direct activities were any math-related parent-child interaction that directly 

targeted math skills, like using flash cards, helping with math homework, or counting with 

children. Indirect activities captured any math-related parent-child interaction that incidentally 

targeted math skills, like cooking or playing board games. Math attitudes and/or beliefs included 

any parent affective factors toward math, like math anxiety and math importance. Math 

expectations represented parent expectations for their children’s math achievement. Spatial 

activities were non-math activities that directly targeted spatial skills, like doing puzzles. Math 

talk included any math-related utterance made by a parent when interacting with their children, 

whether it included a comparison of quantity (i.e., more, less) or counting the squares aloud as 

they played board games.  

Although playing board games was included in the indirect math activities category, the 

difference for including board game play in math talk was the inclusion of a score for the number 

of specific utterances parents made during board game play, not just an indication of whether or 

not parents played board games with their children. Thus, if an effect size included playing board 

games only, without tallying the number of specific parent utterances related to math during 

board game play, that correlation would be coded as an indirect activity, rather than math talk. 

On the other hand, if there was no measurement of parent speech during board game play, board 

game play would be coded as an indirect activity. A combination of direct and indirect activities 

represented parent-child math-related interactions that combined activities that both directly and 

incidentally targeted math skills. Finally, a combination of activities and attitudes and/or beliefs 
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or expectations was used when more than one distinct component of the HME was included in a 

single HME score, like the inclusion of direct math activities and parent math anxiety in a single 

sum or latent factor score. 

HME calculation. The HME calculation was coded as 1 = latent factor, 2 = sum score, or 3 

= single HME item. A correlation as coded as a single HME item when the effect size included 

only a single question from an HME measure. 

Math assessment. Based on the math assessments that were found most frequently in the 

HME literature, the math assessments were coded as 1 = researcher-created, 2 = KeyMath-3 

Diagnostic Assessment (KeyMath), 4 = Test of Early Mathematics Ability 2 and 3 (TEMA), 5 = 

Woodcock Johnson-III/IV Tests of Achievement (WJ), 6 = Woodcock-Muñoz Batería III (WM), 

7 = Utrecht Early Numeracy Test-Revised (UENT-R), 8 = Preschool Early Numeracy Skills test 

(PENS), 9 = California Achievement Test Mathematics subtest (CATM), 11 = Child Math 

Assessment (CMA), 12 = Other (including Individualized Growth and Developmental Indicators 

of Early Numeracy [IGDIs-EN] , Bracken Basic Concepts Scale- 3rd Edition: Receptive 

[BBCS:3-R] and School Readiness Composite [BBCS:3-SRC], Performance Indicators in 

Primary School [PIPS], Early Childhood Longitudinal Study-Kindergarten Cohort Math [ECLS-

K Math], The Researcher-Based Early Mathematics Assessment Short-Form [REMA-S],  

Diagnostic Test for Basic Mathematical Concepts [DTBMC], Stanford Diagnostic Mathematics 

Test, Fourth Edition [SDMT4] Computation subtest), 13 = Multiple math assessments, 14 = 

Parent-report, or 18 = Test for Diagnostic Assessment of Mathematical Disabilities (TEDI-

MATH). Multiple math assessments was used for an effect size only when the single effect size 

included more than one distinct math assessment but not if the effect sizes included multiple 

subtests from the same math assessment. 



24 

Math domain. Specifically, we coded math domain as 2 = arithmetic operations, 3 = 

numerical relations, 4 = numbering, 10 = multiple math domains, or 11 = spatial skills to 

examine whether the math domain measured contributed to study heterogeneity. These different 

math domains were previously described in the introduction. 

Other math assessment characteristics. We coded for several nuances in how math was 

assessed in the HME literature, including whether the math assessment used was symbolic, with 

1 = symbolic, 2 = non-symbolic, 3 = both symbolic and non-symbolic; timed, with 1 = timed, 2 = 

untimed, 3 = combination of timed and untimed; a composite, with 1 = composite of many math 

measures, 2 = a single measure; or standardized, with 1 = standardized, 2 = unstandardized, 3 = 

combination of standardized and unstandardized. Notably, only math assessments that included 

multiple different math assessments at once, rather than multiple subtests from the same math 

assessment were coded as a composite for the composite moderator and as multiple for the math 

assessment moderator. When math was assessed using multiple subtests from the same math 

assessment, the specific math assessment used was coded for the math assessment moderator, 

and single math measure was coded for the composite moderator. 

Longitudinal study. Whether the study captured longitudinal (at different time points) or 

concurrent (at the same time point) relations between the HME and children’s math achievement 

was coded as 1 = longitudinal, 2 = concurrent. 

Coding reliability. The quality of the coding was evaluated by inter-rater reliability 

testing using Cohen’s kappa (Cohen, 1960) on a random selection of 20% of the articles from the 

final sample (n = 10). Once a Cohen’s kappa indicating a high inter-rater reliability (greater 

than.75), is achieved the coding will be deemed satisfactory and ready for analysis. 
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Effect Size Computation and Combining Effect Sizes 

In the present meta-analysis, we examined the average association between the home math 

environment and children’s math achievement, using the zero-order correlation coefficient, or r 

effect size. This r effect size was chosen because the empirical work examining the relation 

between the HME and children’s math achievement uses primarily correlational designs that 

report Pearson correlations. A handful of studies in the final sample used experimental designs 

that employed HME interventions (e.g., Cain-Caston, 2013) and compared the math performance 

of those who participated in the intervention to control children’s. In these cases, we reported 

only concurrent effect sizes that were calculated before the intervention was implemented. Once 

the r correlation coefficient(s) between the HME and children’s math achievement were coded 

for each study, the effect sizes were converted using Fisher’s Z transformation (Lipsey & 

Wilson, 2001). Specifically, each r was weighted by using the weighted wi, which was based on 

the sample size associated with the r relative to the total accumulated sample size (see formula 

below): 

𝑍" = 0.5𝐿𝑛 )
1 + 𝑟"
1 − 𝑟"

. , 	𝑆𝐸" =
1
𝑤"
, (𝑤ℎ𝑒𝑟𝑒	𝑤" = 𝑛 − 3) 

Then, the average Fisher’s 𝑍̅ was obtained as the weighted average 𝑍", using: 

𝑍̅ = 	
∑(𝑤" × 𝑍")

∑𝑤"
, (𝑤ℎ𝑒𝑟𝑒	𝑤" = 𝑛 − 3) 

Handling variability in effect sizes across studies. Once 𝑍̅	was obtained, the average 

weighted correlation between the HME and children’s math achievement was calculated using a 

random effects meta-analysis. A random effects model assumes that there is a distribution of 

potential effect sizes that come from different populations, while a fixed effects model attributes 

study heterogeneity solely to sampling error, assuming that one universal effect size exists that 
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comes from a single population (Borenstein, Hedges, Higgins, & Rothstein, 2009; Card, 2011). 

For the present analysis examining the relation between the HME and children’s math 

achievement, a random effects model was chosen because the inconsistent methodology and 

definitional criteria used in HME research, and not just sampling error, most likely contribute to 

the high variability in effect sizes found. In addition, many of the studies included in the present 

analysis were conducted across a variety of different settings, including different countries. As 

such, it would be reasonable to assume that differences between studies represent true 

differences among different populations, rather than assuming that all study samples belong to a 

universal sample. 

In order to support the choice of a random effects model,  we evaluated the existence of 

heterogeneity statistically by conducting a Q test and calculating an unweighted sample-based 

estimate of I2. The Q statistic tests for the presence of significant study heterogeneity based on a 

𝜒=	distribution with k-1 degrees of freedom (Card, 2011; k = number of effect sizes used for the 

test). In order to show support for the use of a random effects model, the Q value must be greater 

than the critical value of the given degrees of freedom (i.e., have a significant p-value), 

indicating that the effect sizes are heterogenous and not attributable to sampling error. This also 

supports the use of follow-up moderator analyses should to account for the study features that 

contribute to effect size heterogeneity. On the other hand, if the critical value of the given 

degrees of freedom is smaller than the Q statistic, heterogeneity in effect sizes is considered to be 

non-significant, and the modeling may be adjusted to fixed effects. The Q statistic will then be 

converted into I2 in order to calculate the proportion of variance in effect sizes, from 0 to 100%, 

that is attributable to heterogeneity: 

𝐼= = 100% ×
(𝑄 − 𝑑𝑓)

𝑄  
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The use of both of these analyses will help empirically support our choice to use a random 

effects model and to conduct moderator analyses to determine the sources of study heterogeneity 

outside of sampling error.  

Accounting for dependent effect sizes. In order to statistically account for the reporting 

of more than one effect size per study sample, a multilevel correlated effects model, controlling 

for study, was conducted with R’s metafor package (Viechtbauer, 2010). The multilevel 

correlated effects model accounts for dependent effect sizes by modeling the Level-1 (effect 

size) and Level-2 (sample) correlations using maximum likelihood estimation (Fisher & Tipton, 

2015). The methodological decision to use multilevel correlated effects modeling was based on 

the fact that our final data sample included 684 effect sizes that were drawn from only 52 studies, 

making it likely that accounting for study-level influences was necessary. Rather than requiring 

the calculation of an average effect size for each study or the extraction of covariance structures, 

the multilevel correlated effects analysis clustered dependent effect sizes by a given control 

variable (study ID) and weighted them based on correlated effects (rho or ρ), resulting in 

unbiased standard error estimates. The default value for correlated effects models of ρ = 0.8 was 

used for the current analyses. Then, in order to evaluate the robustness of our estimates, 

sensitivity analyses were conducted to test whether varying values of within-study correlations, 

or ρ (rho = 0.0, 0.2, 0.4, 0.6, & 0.8) impacted the values estimated for effect sizes, standard 

errors, and τ2 (Hedges et al., 2010).  

Evaluation of Publication Bias 

Publication bias, which has become an increasing problem in the psychological sciences 

refers to the increased likelihood of studies with significant findings to be published and of 

studies with non-significant findings to be filed away in a drawer (i.e., the “file-drawer 
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problem”; Rosenthal, 1979). Problematically, publication bias may lead to the estimation of a 

meta-analytic effect size that is smaller (or larger) than the true population effect size. Thus, in 

order to evaluate whether average weighted correlation between the HME and children’s math 

achievement calculated for the current meta-analysis showed evidence of publication bias, R’s 

metafor package (Viechtbauer, 2010) was used to conduct multiple tests using both visual and 

statistical techniques.  

As an additional step, a p-curve analysis was also conducted to determine if there was 

evidence of p-hacking. P-hacking refers to the phenomenon where researchers collect or select 

data or modify statistical analyses until non-significant results become significant (Head, 

Holman, Lanfear, Kahn, & Jennions, 2015). Importantly, evidence of p-hacking typically 

indicates that a file-drawer problem exists because authors are likely to resort to p-hacking in 

order to obtain significant results so they can get their results published, while other researchers 

that do not p-hack and have non-significant findings are likely to be rejected for publication and 

filed away. We utilized p-curve analyses to determine the potential existence of publication bias 

by examining the distribution of significant p-values that corresponded to our observed effect 

sizes. P-curve analyses start with the calculation of pp-values, which represent the probability of 

obtaining each p-value if the null hypothesis (i.e., no significant effect) were true. These 

probabilities are then summed to derive a 𝜒=	value for testing the significance of the p-curve 

skew. A flat p-curve indicates that the probability of observing all p-values is uniform, and a 

right-skewed p-curve indicates that the effect is likely to be real, and the probability of lower p-

values is greater than high p-values. Both of these scenarios likely point to a low chance of 

publication bias. However, a left-skewed p-curve shows evidence of p-hacking and indicates that 

the probability of high p-values is greater than the probability of low p-values. P-curve 
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calculations were conducted within the p-curve application available at: http://www.p-

curve.com/app4/, which provided both binomial and continuous tests for publication bias and p-

hacking. 

Funnel plot. Visually, publication bias was assessed using a funnel plot, a kind of scatter 

plot that visually depicts effect sizes relative to their standard errors (Card, 2011). A symmetrical 

distribution of observed effect sizes around the vertical line would indicate no publication bias, 

while an asymmetrical distribution would suggest potential publication bias. Symmetry was 

parametrically determined using the Egger test (Egger, Smith, Schneider, & Minder, 1997), 

which provides a z-estimate with an associated p-value that indicate whether or not asymmetry is 

significant.  

Sensitivity Analyses 

Fail-safe N. The Fail-safe N calculates the number of studies with null results (i.e., a 

statistically non-significant Pearson correlation coefficient) that would have to exist and be left 

out for the results of the average weighted effect size to be null. If evidence of significant 

publication bias is found, the metafor package will be used to make this calculation and 

determine the degree of publication bias. 

Trim and fill. The ‘trim and fill’ method is used to correct funnel plot asymmetry by 

estimating what the results would be without publication bias and providing an estimate of the 

number of missing studies. The method estimates the true center of a funnel plot by removing the 

smaller studies driving funnel plot asymmetry and replacing the omitted studies and their 

missing ‘counterparts’ around the true funnel plot center (Duval & Tweedie, 2000a, 2000b). This 

analysis will also be conducted using metafor. 
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Robust Variance Estimation. In order to assess the robustness of our multilevel 

correlated effects estimates, R’s robumeta package (Fisher, 2017) will be utilized to conduct a 

robust variance estimation analysis and follow-up sensitivity analysis across varying values of 

possible within-study correlations, or ρ (0.0, 0.2, 0.4, 0.6, & 0.8).  

Excluding a Potentially Influential Study. In order to statistically determine if Cheung, 

2017, a study with over 227 effect sizes had an inordinate influence on our meta-analytic results, 

we conducted a meta-analysis that excluded the study from the average weighted correlation 

calculation and compared the results to our average weighted correlation coefficient that 

included the study. If the effect sizes are found to be the same or similar, the study will be kept in 

our final study sample. If the effect size estimates are significantly different, the study will be 

excluded. 

Data Analytic Plan 

A meta-analysis was conducted to calculate the average correlation between the home 

math environment (which included home-based activities and talk related to math, parent 

attitudes and beliefs toward math, and parent math expectations) and children’s math 

achievement (k = 52 studies, n = 684 effect sizes). Given that study samples spanned a wide 

range of ages, grades, and countries of origin, and a variety of home math environment and math 

achievement measures were utilized, a random effects model, which assumes that there is a 

distribution of true effect sizes instead of a single true effect size, was used to estimate the 

weighted average effect size, r (Hedges, 1983). For the purpose of comparison, a random effects 

model with all effect sizes was first conducted without controlling for sample dependence, but 

then a follow-up analysis was conducted in order to model clustering induced by effects derived 
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from the same sample (Konstantopoulos, 2011; Nakagawa & Santos, 2012) utilizing multilevel 

correlated effects modeling (Viechtbauer, 2010).  

Following the main analyses to calculate the average weighted r effect size between the 

HME and children’s math achievement, a series of multilevel correlated effects moderator 

analyses, which controlled for study, were conducted to test sample, assessment, and study 

characteristics that may be driving study heterogeneity (Borenstein et al., 2009). Significant 

moderators were tested, one-by-one, with the metafor package based on the Q, I2, and σ2 

statistics (QM; Borenstein et al., 2009; Higgins et al., 2003). The Q statistic and corresponding p-

value indicated whether or not a significant portion of study heterogeneity was attributable to the 

given moderator (Borenstein et al., 2009), while the I2 statistic captured the proportion of 

variance (0-100%) that was due to heterogeneity (Higgins et al., 2003), and the σ 2 statistic 

represented the true between-study variance from the observed studies (Konstantonopoulos, 

2011).  
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CHAPTER 3 
 

RESULTS AND DISCUSSION 
 

Results 

Included Studies 

Our article searches yielded 1725 articles for review and coding. Only two articles from the 

final article sample were not captured by database searches and were procured from manual 

searching (Cai, 2003; Silinskas et al., 2010). During the first review of articles, 1190 of the 

articles were rejected based on titles or being duplicates (i.e., duplicates of both included and 

excluded articles), 431 more articles were excluded based on reviewing abstracts, and 52 were 

rejected based on reviewing methods or full manuscripts, resulting in a final sample of 52 

articles. The article selection process is depicted in Figure 1. Given that 33% of the effect sizes 

from the final sample of 52 studies came from just one study (Cheung, 2013), that study was 

excluded from the main results and reported in Appendix A, resulting in 51 articles, reporting 

456 effect sizes used in the main analyses. After rejecting articles based on titles that indicated 

that the association of interest was not included in the study (i.e., the article measured the home 

learning environment but did not include an achievement measure, the article was a review or a 

qualitative study, or the article measured children’s reading instead of math achievement), the 

most common reason for article exclusion was the use of a home environment and/or 

achievement measure that was not math-specific. Once the final article sample was collected, the 

articles were divided between the two coders for extraction of data needed for effect size and 

moderator analyses. Upon completion of coding, a Cohen’s kappa of .98 was achieved, 

indicating a high inter-rater reliability and that the data were ready for analysis. 
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Overall Average Weighted Correlation Between the Home Math Environment and 

Children’s Math Achievement 

Results of the random-effects analysis, which did not account for study dependence, 

yielded an average weighted correlation of .08 [.07-.10], SE=.01, p < .0001. However, given that 

only 51 studies resulted in a sample of 456 effect sizes, a multilevel correlated effects analysis 

was conducted to account for the large number of effect sizes drawn from the same study 

sample. The results from the multilevel correlated effects analysis yielded a higher average 

weighted correlation of .14 [.08, .19], SE = .03, p < .0001. Given the large difference in these 

estimates, with the results from the multilevel correlated effects analyses yielding an effect size 

that was nearly twice as large as the model that did not control for study, it appears that not 

accounting for study dependence drastically impacted our results, which provides support for the 

methodological decision to also account for study dependence when conducting follow-up 

moderator analyses. 

Looking next at the results of the tests for study heterogeneity, significant heterogeneity 

was found, with Q [455] = 4279.97, p < .0001. The total heterogeneity of the r correlation 

coefficient was estimated to be high, I2 = 89.37%. Variance between studies was also found to be 

significant based on a 95% confidence interval, σ2 = 0.04 [0.02-0.06]. Thus, multiple moderator 

analyses were conducted, one moderator at a time, in order to determine the sample, assessment, 

and study characteristics that may have significantly contributed to study heterogeneity.  

Moderator Analyses for Sample Characteristics 

All moderators were entered as categorical, except for age, which was entered as 

continuous. Age was a significant source of heterogeneity for the correlation between the HME 

and children’s math achievement (F[1, 428] = 7.95, p = .0050, σ2 = .04 [.02, .06], k = 430) with a 
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-.01 unit decrease in the correlation between the HME and children’s math achievement for 

every 1-year increase in age. The test for residual heterogeneity was also significant (QE[428] = 

1862.00, p < .0001), indicating that, even after accounting for age, variability in the observed 

effect sizes was significantly larger than would be induced by sampling error. In fact, I2 = 

77.01% of the variability in effect sizes was left unexplained after accounting for age. 

All moderation analysis results, including the effect sizes, sample sizes, and 95% 

confidence intervals for each sample characteristic moderator and subgroup are presented in 

Figure 2. The results of the overall omnibus test with grade as the moderator showed that grade 

was a significant source of heterogeneity (F(1, 410) = 8.06, p < .0001, σ2 = .04 [.02, .07], k = 

415). However, only study samples that included only PK/KG children (r = .15 [.08, .21], p < 

.0001, n = 298) or only elementary school children (r = .13 [.06, .19], p = .0002, n = 75) had a 

significant influence on the correlation between the HME and children’s math achievement, 

while study samples that included a combination of PK/KG and elementary school children (r = 

.20 [-.002, .40], p = .0534, n = 30), a combination of elementary and middle school children (r = 

.05 [-.21, .30], p = .7236, n = 8), and only middle school children (r = .17 [-.23, .57], p = .4070, n 

= 4) did not. When comparing differences between grades, the pairwise t-tests with PK/KG-only 

samples as the reference group showed that study samples comprised of only elementary school 

children demonstrated significantly lower correlations between the HME and children’s math 

achievement than samples made up of only PK/KG children (b = -0.02 [-0.02,-0.01], t(1) = -4.25, 

p < .0001). The test for residual heterogeneity was also significant (QE[410] = 4097.53, p < 

.0001), and even after accounting for the grade of the study sample, I2 = 89.99% of the 

variability in effect sizes remained to be explained. 
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 The results of the overall omnibus test with country as the moderator showed that the 

study sample’s country of origin was a significant source of heterogeneity (F (10, 446) = 6.08, p 

< .0001, σ2 = .02 [.01, .04], k = 456) in the correlation between the HME and children’s math 

achievement. Samples from the United States (r = .08 [.02, .14], p = .0068, n = 250), Canada (r = 

.22 [.09, .34], p = .0006, n = 37), the Netherlands (r = .49 [.33, .66], p < .0001, n = 10), Greece (r 

= .23 [.09, .38], p = .0015, n = 11), and Australia (r = .26 [.04, .49], p = .0234, n = 6) had 

average weighted correlations that were positive and significantly different from zero, but 

samples from Germany (r = .09 [-.22, .39], p = .5799, n = 4), Italy (r = .05 [-.25, .35], p = .7480, 

n = 21), China (r = .10 [-.03, .22], p = .1263, n = 13), Chile (r = .05 [-.16, .27], p = .6202, n = 

36), and the other countries category (r = .03 [-.13, .18], p = .7475, n = 68) did not. When 

comparing differences between countries of origin, omnibus test results showed that study 

samples from the Netherlands (𝑏	= 0.41 [0.23, 0.58], t(9) = 4.54, p < .0001) demonstrated 

significantly higher correlations between the HME and children’s math achievement than United 

States samples, but all other countries of origin did not significantly differ from United States 

samples. When samples from China were set as the reference group, contrary to our hypothesis, 

Chinese and U.S. samples did not significantly differ (b = 0.01 [-0.11, 0.13], t(9) = 0.20, p = 

.8413), and only Netherlands samples showed significantly different correlations, which were 

higher, rather than lower, than the correlation for Chinese samples (b = 0.40 [0.19, 0.60], t(9) = 

3.76, p = .0002). The test for residual heterogeneity was also significant (QE[446] = 4008.88, p < 

.0001), and even after accounting for the country of origin of the study sample, I2 = 88.88% of 

the variability in effect sizes was left unexplained. 

Finally, the results of the overall omnibus test with special sample characteristics as the 

moderator showed that they were a significant source of heterogeneity (F[9, 447] = 3.51, p = 
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.0003, σ2 = .03 [.02, .06], k = 456). Study samples that were average/typically-developing (r = 

.16 [.09, .24], p < .0001, n = 135), all one ethnicity (r = .12 [.03, .19], p = .0045, n = 148), all 

girls (r = .16 [.05, .26], p = .0041, n = 14), all boys (r = .15 [.04, .20], p = .0035, n = 13), or SLI 

(r = .54 [.17, .91], p = .0048, n = 4) had average weighted correlations that were positive and 

significantly different from zero, but samples that were low SES (r = .10 [-.01, .22], p = .0710, n 

= 96), high minority (r = .05 [-.32, .42], p = .7875, n = 18), high SES (r = .13 [-.25, .51], p = 

.4982, n = 7), or from the other category (r = .08 [-.04, .20], p = .1934, n = 21) did not. When 

comparing across special sample characteristics, omnibus test showed that in comparison to 

average/typically-developing study samples no significant differences in the average weighted 

correlation between the HME and children’s math achievement were found due to special sample 

characteristics. Contrary to our hypotheses, low versus high SES samples (b = 0.03 [-0.37, 0.43], 

t(8) = 0.14, p = .8901), and samples that were made up of all boys versus all girls (b = -0.00 [-

0.10, 0.09], t(8) = -0.04, p = .9678) did not show significantly different correlations between the 

HME and children’s math achievement. The test for residual heterogeneity was significant 

(QE[447] = 4143.59, p < .0001), and even after accounting for special sample characteristics, I2 = 

89.21% of the variability in effect sizes was left unexplained. 

Moderator Analyses for HME Assessment Characteristics 

All moderation analysis results, including the effect sizes, sample sizes, and 95% 

confidence intervals for each HME assessment moderator and subgroup are presented in Figure 

3. The results of the overall omnibus test with the HME component measured as a moderator 

showed that the specific HME component measured was a significant source of heterogeneity [F 

(8, 448) = 6.29, p < .0001, σ2 = .01 (.01, .03), k = 456] in the average weighted correlation 

between the HME and children’s math achievement. HME measures that assessed direct HME 
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activities (r = .13 [.07, .19], p < .0001, n = 94), indirect HME activities (r = .08 [.02, .13], p = 

.0051, n = 155), parent math attitudes and/or beliefs only (r = .07 [.002, .15], p = .0446, n = 91), 

math expectations (r = .24 [.14, .34], p < .0001, n = 22), a combination of direct and indirect 

HME activities (r = .18 [.10, .26], p < .0001, n = 45), and a combination of activities and 

attitudes and/or beliefs or expectations (r = .20 [.05, .34], p = .0075, n = 15) had average 

weighted correlations that were positive and significantly different from zero, but HME 

measures that assessed spatial activities (r = .09 [-.08, .26], p = .2829, n = 8) and parent math 

talk (r = .09 [-.04, .23], p = .1812, n = 26) did not. When comparing between HME components, 

pairwise t-test results showed that, contrary to our hypothesis, when direct math activities was set 

as the reference group, no significant differences in the average weighted correlation between the 

HME and children’s math achievement were found for direct versus indirect HME activities (b = 

-0.01 [-0.01, 0.04], t(7) = 1.06, p = .2890). Our pairwise t-test results with parent math 

expectations as the reference group partially supported our hypothesis, showing that only HME 

measures of parent math talk had a significantly lower magnitude average weighted correlations 

with children’s math achievement than parent math expectations (b = 0.08 [ 0.04, 0.13], t(7) = 

3.73, p = .0002). The test for residual heterogeneity was not significant (QE[448] = 409.98, p = 

.9007), indicating that when the specific HME component measured was accounted for, there 

was no significant variability in effect sizes left unexplained. 

For the HME calculation moderator, the results of the overall omnibus test showed that 

the specific method of calculation used to measure the HME was a significant source of 

heterogeneity [F (3, 453) = 11.39, p < .0001, σ2 = .04 (.02, .06), k = 456] in the average weighted 

correlation between the HME and children’s math achievement. HME calculations that utilized 

latent factor scores (r = .14 [.08, .20], p < .0001, n = 136), sum scores (r = .16 [.10, .22], p < 
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.0001, n = 215), or single items (r = .08 [.01, .15], p = .0207, n = 105) had average weighted 

correlations that were positive and significantly different from zero. When setting HME 

calculations using latent factor scores as the reference group, pairwise t-test results showed that 

no significant differences in the average weighted correlation between the HME and children’s 

math achievement were found. Thus, contrary to our expectations, HME scores calculated as 

latent factor scores did not result in significantly higher average weighted correlations between 

the HME and children’s math achievement (sum scores: b = 0.02 [-0.01, 0.06], t(2) = 1.28, p = 

.2012; single items: b = -0.06 [-0.11, 0.004], t(2) = -1.83, p = .0675). The test for residual 

heterogeneity was significant (QE[453] = 4279.26, p < .0001), and even after accounting for the 

HME calculation used, I2 = 89.41% of the variability in effect sizes was left unexplained. 

Moderator Analyses for Math Assessment Characteristics 

All moderation analysis results, including the effect sizes, sample sizes, and 95% 

confidence intervals for each math assessment moderator are presented in Figures 4 and 5. The 

results of the overall omnibus test with math assessment as the moderator showed that the math 

assessment used to measure children’s math achievement was a significant source of 

heterogeneity [F(13, 443) = 4.09, p < .0001, σ2 = .04 (.02, .07), k = 456] in the average weighted 

correlation between the HME and children’s math achievement. Researcher-created assessments 

(r = .14 [.07, .20], p < .0001, n = 188), the KeyMath (r = .11 [.01, .20], p = .0235, n = 13), the 

WJ (r = .48 [.25, .71], p < .0001, n = 3), the WM (r = .19 [.11, .28], p < .0001, n = 11), the 

UENT-R (r = .20 [.09, .30], p = .0003, n = 12), the CATM (r = .20 [.07, .32], p = .0026, n = 3), 

the TEDI-MATH (r = .16 [.04, .27], p = .0061, n = 11), parent-report of children’s math 

achievement (r = .19 [.09, .29], p = .0001, n = 16), multiple math assessments (r = .16 [.08, .24], 

p = .0001, n = 29), or the other math assessment category (r = .13 [.05, .20], p = .0007, n = 95) 
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had average weighted correlations that were positive and significantly different from zero, but 

the TEMA (r = -.09 [-.25, .08], p = .3156, n = 30), the PENS (r = .16 [-.13, .44], p = .2772, n = 

41), or the CMA (r = .29 [-.10, .67], p = .1426, n = 4) did not. Pairwise t-test results showed that, 

when researcher-created math assessments were set as the reference group, the WJ (b = 0.34 

[0.12, 0.57], t(12) = 3.01, p = .0028) had significantly higher average weighted correlations 

between the HME and children’s math achievement, and the TEMA had significantly lower 

magnitude average weighted correlations (b = -0.22 [-0.40, -0.04], t(12) = -2.44,  p = .0152). The 

test for residual heterogeneity was also significant (QE[443] = 4125.88, p < .0001), and even after 

accounting for the specific math assessment used, I2 = 89.26% of the variability in effect sizes 

was left unexplained. 

The results of overall omnibus test with math domain as the moderator showed that the 

math domain assessed was not a significant source of heterogeneity [F (4, 451) = 18.32, p = 

.0010, σ2 = .04 (.02, .06), k = 456] in the average weighted correlation between the HME and 

children’s math achievement. When arithmetic operations (r = .13 [.07, .19], p < .0001, n = 76), 

numerical relations (r = .09 [.03, .15], p = .0023, n = 70), numbering (r = .10 [.04, .16], p = 

.0016, n = 49), or multiple math domains (r = .15 [.09, .20], p < .0001, n = 257) were assessed 

the average weighted correlation between the HME and math achievement was positive and 

significantly different from zero, but when the spatial domain was assessed it was not (r =.00 [-

0.14, 0.14], p = .9754, n = 4). According to pairwise t-test results with math measures assessing 

multiple math domains as the reference group, all other math domains (numerical relations: b = -

0.05 [-0.08, -0.03], t(4) = -3.67, p = .0003; numbering: b = -0.05 [-0.08, -0.01], t(4) = -2.72, p = 

.0069; spatial skills: b = -0.15 [-0.28, -0.01], t(4) = -2.15, p = .0324), with the exception of 

arithmetic operations (b = -0.02 [-0.05, 0.01], t(4) = -1.20, p = .2325), had significantly lower 
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average weighted correlations between the HME and children’s math achievement. The test for 

residual heterogeneity was also significant (QE[451] = 4253.16, p < .0001), and even after 

accounting for the math domain assessed, I2 = 89.40% of the variability in effect sizes was left 

unexplained. 

For the symbolic math assessment moderator, the results of the overall omnibus test 

showed that whether math achievement was assessed using a symbolic, non-symbolic, or 

combination of symbolic and non-symbolic assessments was a significant source of 

heterogeneity [F (3, 453) = 13.89,  p < .0001, σ2 = .04 (.02, .06), k = 456] in the average 

weighted correlation between the HME and children’s math achievement. Symbolic (r = .15 [.09, 

.21], p < .0001, n = 213), non-symbolic (r = .12 [.06, .18], p < .0001, n = 61), and combined 

symbolic and non-symbolic (r = .13 [0.07, 0.18], p < .0001, n = 182) math assessments all had 

average weighted correlations that were positive and significantly different from zero. According 

to pairwise t-tests with symbolic math assessments as the reference group, the average weighted 

correlation between the HME and children’s math achievement was significantly lower when 

measured by a non-symbolic math assessment (b = -0.03 [-0.05, -0.01], t(2) = -2.69, p = .0073) 

or a combination of symbolic and non-symbolic math assessments (b = -0.02 [-0.03, -0.01], t(2) 

= -3.68, p = .0003). The test for residual heterogeneity was also significant (QE[453] = 4211.59, 

p < .0001), and even after accounting for whether the math assessment was symbolic, I2 = 

89.24% of the variability in effect sizes was left unexplained. 

For the timed math assessment moderator, the results of the overall omnibus test showed 

that whether math achievement was assessed using a timed, untimed, or combination of timed 

and untimed assessments was a significant source of heterogeneity [F (3, 453) = 14.38, p < 

.0001, σ2 = .04 (.02, .06), k = 456] in the average weighted correlation between the HME and 
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children’s math achievement. Math assessed by timed (r = .07 [.01, .13], p = .0309, n = 67), 

untimed (r = .14 [.09, .20], p < .0001, n = 379), or a combination of timed and untimed measures 

(r = .14 [.08, .21], p < .0001, n = 10) had average weighted correlations that were positive and 

significantly different from zero. In comparison to math assessed with a timed assessment, 

pairwise t -tests showed that math assessments that were untimed (b = 0.07 [0.04, 0.11], t(2) = 

3.89, p = .0001) or a combination of timed and untimed (b = 0.07 [0.03, 0.12], t(2) = 3.50, p = 

.0005) showed significantly higher average weighted correlations between the HME and 

children’s math achievement. The test for residual heterogeneity was also significant (QE[453] = 

4241.40, p < .0001), and even after accounting for whether the math assessment was timed, I2 = 

89.32% of the variability in effect sizes was left unexplained. 

For the composite math assessment moderator, the results of the overall omnibus test 

showed that whether math achievement was assessed using a composite or a single math 

assessment was a significant source of heterogeneity [F (2, 454) = 12.28, p < .0001, σ2 = .04 (.02, 

.06), k = 456] in the average weighted correlation between the HME and children’s math 

achievement. Both composite (r = .15 [.09, .22], p < .0001, n = 70) and single-measure (r = .13 

[.08, .19], p < .0001, n = 386) math assessments had average weighted correlations that were 

positive and significantly different from zero. Pairwise t-test results showed that, in comparison 

to math assessed with a composite measure, the average weighted correlation between the HME 

and children’s math achievement was statistically the same for math assessed with a single 

measure (b = -0.02 [-0.06, 0.02], t(2) = -0.84, p = .3996). The test for residual heterogeneity was 

also significant (QE[454] = 4055.67, p < .0001), and even after accounting for whether math was 

assessed using a composite or a single assessment, I2 = 88.81% of the variability in effect sizes 

was left unexplained. 
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Finally, for the standardized math assessment moderator, the results of the overall 

omnibus test showed that whether math achievement was assessed using a standardized, 

unstandardized, or combination of standardized and unstandardized assessments was a 

significant source of heterogeneity [F (3, 453) = 9.62, p < .0001, σ2 = .03 (.02, .06), k = 456] in 

the average weighted correlation between the HME and children’s math achievement. 

Standardized (r = .15 [.09, .21], p < .0001, n = 85) and unstandardized math assessments (r = .12 

[.07, .18], p < .0001, n = 357) had average weighted correlations that were positive and 

significantly different from zero, but combined standardized and unstandardized (r = .31 [-.05, 

.68], p = .1862, n = 14) math assessments did not. According to pairwise t-tests with 

standardized math assessments as the reference group, the average weighted correlation between 

the HME and children’s math achievement was not significantly lower when measured by an 

unstandardized math assessment (b = -0.03 [-0.06, 0.00], t(2) = -1.79, p = .0744). The test for 

residual heterogeneity was also significant (QE[453] = 4015.51, p < .0001), and even after 

accounting for whether or not the study employed longitudinal or concurrent assessments, I2 = 

88.72% of the variability in effect sizes was left unexplained. 

Moderator Analyses for Study Characteristics 

All moderation analysis results, including the effect sizes, sample sizes, and 95% 

confidence intervals for the study characteristic moderator and its subgroups are presented in 

Figure 5. The results of the overall omnibus test with whether the study captured longitudinal (at 

different time points) or concurrent (at the same time point) relations between the HME and 

children’s math achievement as the moderator showed that it was a significant source of 

heterogeneity [F (2, 454) = 14.93, p < .0001, σ2 = .04 (.02, .06), k = 456] in the average weighted 

correlation between the HME and children’s math achievement. Both longitudinal studies (r = 
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.09 [.02, .15], p = .0105, n = 109) and studies that measured the HME and children’s math 

achievement concurrently (r = .16 [.10, .22], p < .0001, n = 347) had average weighted 

correlations that were positive and significantly different from zero. Pairwise t-tests showed that 

effect sizes that captured concurrent relations had average weighted correlations between the 

HME and children’s math achievement that were significantly higher than effect sizes that 

captured longitudinal relations (b = 0.07 [0.02, 0.12], t(1) = 2.55, p = .0112). The test for residual 

heterogeneity was also significant (QE[454] = 4279.81, p < .0001), and even after accounting for 

whether the math assessment was timed, I2 =89.39% of the variability in effect sizes was left 

unexplained. 

Overall, results from all 14 individual omnibus tests, except for the test including the 

HME component moderator, showed significant residual heterogeneity remained after 

accounting for the moderator modeled. This means that variability in the observed effect sizes 

was significantly larger than would be induced by sampling error alone, and that other 

moderators not tested in each moderator model were influencing the magnitude of the correlation 

between the HME and children’s math achievement. Given that each moderator was tested 

individually, it is not surprising that no single moderator (with the exception of the HME 

component moderator) accounted for all significant effect size variance. Thus, as a final step to 

determine the amount of study heterogeneity accounted for by all potential moderators at once, a 

multilevel correlated effects meta-analysis was run with all 14 coded sample, assessment, and 

study features included. Results from the overall omnibus test that included all moderators 

showed that the combined moderators were a significant source of heterogeneity [F (55, 333) = 

4.08, p < .0001, σ2 = .03 (.01, .09)] in the average weighted correlation between the HME and 

children’s math achievement. The residual heterogeneity of the model including all moderators 
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was also significant (QE(333) = 1028.12, p < .0001, k = 389), with I2 = 67.61% of the variability 

in effect sizes left unexplained, indicating that other moderators not tested in the present analysis 

were likely influencing the magnitude of the correlation between the HME and children’s math 

achievement, beyond the effects of sampling error.  

Publication Bias 

Funnel plot. First, publication bias was assessed using a funnel plot of effect sizes (x-axis) to 

standard errors (y-axis), which is depicted in Figure 6. A visual inspection showed that most of 

the estimates, both below and above the mean, are clustered near the top of the funnel, 

suggesting high precision in effect size estimates overall. However, there are multiple studies 

outside of the shaded areas that represent the 90% (white), 95% (light grey), and 99% (dark grey) 

confidence intervals, suggesting that publication bias is likely. Based on Egger’s test, which 

provides a parametric test for the skew of the distribution of effect sizes, significant publication 

bias is present (t[454] = 2.19, p = .0289), with slightly more effect sizes below, than above, the 

average weighted correlation coefficient. Given that slightly more lower magnitude correlations 

are reported than are higher magnitude correlations (i.e., above the meta-analytic average), our 

results do not support the existence of a file-drawer problem, wherein small effect sizes fail to be 

published and/or reported.  

P-curve analysis. Results from the continuous p-curve analysis showed that both the full (Z 

= -5.74, p < .0001) and half (Z = -5.51, p < .0001) p-curve tests supported the existence of a 

significant right skew (see Figure 7). These combination test results, which have been shown to 

be more robust to p-hacking than a simple p-curve test (Simonsohn et al., 2014), indicated that 

the set of significant findings had evidential value. Furthermore, full p-curve, and both the half p-

curve and binomial 33% power test were non-significant (full: Z = 4.26, p > .9999; half: Z = 
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4.58, p > .9999; binomial: p > .9999), indicating that the p-curve does not support that the 

evidential value is inadequate nor absent. These combined results indicate that the present meta-

analytic sample of studies has evidential value and does not show evidence of p-hacking.  

Sensitivity Analyses 

Trim-and-fill. Trim-and-fill results are presented in Figure 8. The trim-and-fill procedure 

estimated that no studies were missing from above or below the 99% confidence interval around 

the average weighted correlation between the HME and children’s math achievement, resulting 

in no studies being filled in. Even though a visual inspection of the funnel plot makes it appears 

as if some outliers exist outside the shaded confidence intervals, no studies were trimmed from 

the analysis, so our results do not support this. Given that no estimates were either trimmed or 

filled from our funnel plot, the same estimate of r based on the same number of studies (n = 456) 

was found for the trim-and-fill analysis as the overall meta-analytic results that did not utilize 

multilevel correlated effects modeling (r = 0.08 [0.07, 0.10], p < .0001). Overall, these results are 

promising because they indicate that research on the correlation between the HME and children’s 

math achievement is likely not missing studies (i.e., does not have a file-drawer problem). 

Fail-Safe N. According to the results of the fail-safe N test using the Rosenthal approach, in 

order to achieve null population results (i.e., r = 0), an additional 114,927 studies with null 

results (i.e., showing no significant association between the HME and children’s math 

achievement) are needed to achieve the target null p-value of  > .05. To achieve a p > .01, an 

additional 52,227 studies with null results (r = 0) are needed. These results show that our sample 

of effect sizes is likely capturing a true relation that is significantly different from zero. 

  



46 

Robust Variance Estimation. The results of the RVE analyses using robumeta indicated 

that the effect sizes, standard errors, and τ2 values were identical across different values of ρ (r = 

.14, SE = .03, τ2 = .02 for all values of ρ). Additionally, the overall estimate of the average 

weighted correlation between the HME and children’s math achievement was the same as the 

meta-analytic results found using the metafor package of r = .14, indicating that our meta-

analytic results using metafor are also robust. 

Excluding a potentially influential study. Given that one study in our sample included over 

227 effect sizes (Cheung, 2013), which may have exercised an inordinate influence on our 

overall results, we also conducted a sensitivity analysis to see if our results would change if the 

study was included in the average weighted correlation calculation. Results from the multilevel 

correlated effects meta-analysis that included Cheung, 2013 demonstrated an average weighted 

correlation between the HME and children’s math achievement that was very similar to the 

average estimate that included all studies (Δ .01; r = .13 [.08, .19], p < .0001, σ2 = .04 [.02, .06], 

k = 684). The model including the study also showed significant heterogeneity Q(683) = 

4639.13, p < .0001, so moderator analyses were also performed to statistically test for the 

sources of between-study differences, with results reported in Appendix A. 

Discussion 

Given that there are individual differences in math achievement that appear prior to 

formal schooling that tend to persist once schooling begins, early intervention on math skill 

development is vital in order to combat the formation of math achievement gaps between 

children. One potential early influence on children’s math achievement is the home math 

environment (HME), which captures a confluence of personal, environmental, social, and 

cultural factors that interact to impact children’s math achievement. However, the association 
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between the HME and children’s math achievement has been found to vary widely between 

studies, with correlations ranging from small to large and positive to negative. Furthermore, there 

is little to no standardization in HME measurement across studies, with operationalizations of the 

HME including a range of different categories, like math-related activities (that directly and/or 

indirectly target math skills), parent math attitudes and/or beliefs, parent expectations for their 

children’s math achievement, or any combination of the three. In addition, a significant body of 

research conducted on the association between parent math talk in the home and children’s math 

achievement, has been previously excluded from traditional HME research area. Given the lack 

of consensus on the role of the HME in children’s math achievement, the lack of consistency in 

how the HME is measured, and the previous separation between research on parent math talk and 

other more traditional HME components, we conducted the present meta-analysis in order to 

synthesize a previously disjointed research area and calculate the average weighted correlation 

between the HME and children’s math achievement. Additionally, we conducted a series of 

moderator analyses in order to empirically test the impact of different sample, assessment, and 

study characteristics on the magnitude of the associations found. 

Overall, the results of the present meta-analysis showed that the home math environment 

and children’s math achievement had an average weighted correlation that is small and positive. 

However, given that the correlation of r = .13 translates to only 1% common variance between 

the two domains, it appears that, when evaluating across a combined sample that includes all 

empirical studies on the HME and children’s math achievement, the overall role of the HME in 

children’s math achievement is quite minimal. However, our moderator results did show some 

important subgroup differences, with higher magnitude correlations found when certain aspects 

of the HME, like parent math expectations (r = .24), or certain math assessments, like the WJ (r 
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= .48), were included in the effect size calculation. In fact, our moderation analysis revealed that 

a number of sample, assessment, and study characteristics were driving the variability in effect 

sizes found across studies. 

Starting with the sample characteristic moderators tested, a developmental pattern 

emerged in which the association between the HME and children’s math achievement 

diminished over time. Specifically, our results showed significant negative moderation by age, 

which was echoed by the significant moderation found for grade, with PK/KG grades 

demonstrating a higher correlation between the HME and children’s math achievement than 

elementary grades. Given that once formal schooling begins, formal math instruction is likely to 

be more influential on children’s math skill development than home environmental influences, 

this lower magnitude correlation between the HME and children’s math achievement as children 

age or go from PK/KG to elementary school is not surprising. Indeed, a meta-analysis on the a 

home learning practices related to literacy and their relation with children’s emergent literacy 

skills demonstrated the same decrease over time in the relation between shared book reading and 

children’s literacy skills (Bus, Ijzendoorn, & Pellegrini, 1995). 

The other sample characteristic that exercised a significant influence on the magnitude of 

the correlation between the HME and children’s math achievement was the country of origin of 

the study sample. While most countries represented in our sample of studies aligned with our 

cumulative meta-analytic results, by demonstrating a small positive correlation between the 

HME and children’s math achievement, samples from the Netherlands, which included 10 effect 

sizes, showed especially high correlations of r = .49. In contrast, U.S. samples, which 

represented the majority of our study sample, with 250 effect sizes, showed average weighted 

correlations below the cumulative average, with r = .08. These magnitude differences may be 
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driven by differences in the educational systems of each country. Specifically, the Netherlands 

has a highly-stratified education system, which differentiates students according to tracks, with 

lower-performing students placed in vocational tracks, higher-performing students placed in 

professional tracks, and each track attending different schools with different curricula (Prokic-

Breuer & Dronkers, 2012). Notably, the Netherlands has a larger vocational sector than other 

European countries with highly-stratified educational systems, creating a high selectivity for the 

professional track schools (Prokic-Breuer & Dronkers, 2012). This high level of competition to 

qualify for the professional track may be associated with more family involvement in children’s 

education at home to try to prepare children for professional track schools, which translates into 

a higher magnitude correlation between the HME and children’s math achievement. 

Contrastingly, the U.S. has a comprehensive educational system, in which both high- and low-

performing students are taught in the same schools with undifferentiated curricula. Since 

children are not placed into schools based on performance, parents may not feel the same 

pressure to get their kids into the best schools, leading to more lax home learning practices. 

Importantly, this is only a potential explanation for the between-country differences found and 

was not directly tested in our moderation analyses. Notably, the Netherlands represents less than 

5% of all effect sizes included in our meta-analytic sample, while the U.S. represents almost 

40%, so the present results for moderation by country may not be comprehensive.  

As a final note on the between-country differences, we were surprised to find that our 

hypothesis that Asian countries (i.e., China) would show significantly higher average weighted 

correlations between the HME and children’s math achievement than European countries or the 

United States was not supported. Based on previous work showing that Chinese-American 

parents tend to teach math to their children in more formal, systematic ways than European-
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American parents (Huntsinger et al., 2000), we expected the more dedicated focus on math 

instruction to translate into higher magnitude correlations between the HME and children’s math 

achievement for Chinese samples, especially since direct math activities typically demonstrate 

higher magnitude correlations with children’s math achievement than indirect activities (cite). 

However, Chinese samples did not show a significant association between the HME and 

children’s math achievement at all. Furthermore, our HME component moderation analyses 

showed that direct activities were no more related to children’s math achievement than indirect 

activities. The lack of association found for Chinese samples may be partially explained by the 

fact that China was the only Asian country represented in our study sample, and that most of the 

effect sizes for Chinese samples came from one study (Cheung, 2017). This points to the need 

for more diversity in HME research to capture the true impact of cultural differences in parenting 

practices on the home learning environment and their link to children’s achievement outcomes.  

Our hypotheses for our special sample characteristic moderators were also not supported. 

Specifically, no magnitude differences favoring high-SES samples and boys were found between 

low- and high-SES samples or boys and girls. Our findings for SES were unexpected, given that 

low SES environments have been shown to be less favorable overall with less resource 

availability, in terms of tangible items, like books and flashcards, and nontangible items, like 

parent time and attention (Duncan & Magnuson, 2005). We would have expected this resource 

deficit to manifest as a lower quality HME, resulting in a lower magnitude correlation between 

the HME and children’s math achievement for low SES samples, but this was not the case. Since 

our samples were limited, we would have benefitted from having more studies with high- and/or 

low-SES samples to make more definitive conclusions about the role of SES in the association 

between the HME and children's math achievement.  
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For boys and girls, the findings on math achievement differences have been mixed, with 

meta-analytic work showing that math performance is similar between genders, but that boys 

show more positive math attitudes and affect than girls (Else-Quest, Hyde, & Linn, 2010). Given 

that Eccles’ Parent Socialization Theory conjectures that parent math attitudes are social 

reinforcers for children’s beliefs about their math abilities and math in general, also impacting 

children’s math performance (Eccles et al., 1990), we expected parent socialization differences 

for female versus male children captured by the HME, to result in different magnitude 

correlations for all-boy versus all-girl samples. Differences could have manifested in either 

direction, with the HME having a more pronounced impact on girls’ performance because it is 

where their less positive attitudes and beliefs toward math originated, or with the HME having a 

lesser impact because their more negative attitudes toward math would thwart the potential 

positive impact of the HME on their math achievement. However, this was not found to be the 

case across the present study sample, as boys and girls had correlations that were statistically the 

same. Overall, this finding may be positive because it indicates that qualitative differences in the 

HME that parents provide for children are probably not found based on child gender.  

One final notable finding for special sample characteristics was that SLI samples 

demonstrated especially high correlations. Since only one study and 4 effect sizes included a 

sample composed of 33% SLI children (Kleemans et al., 2013), we caution over drawing any 

over-arching conclusions based on this special sample characteristic. However, given that the 

study sample also comes from the Netherlands, which demonstrated the highest magnitude 

correlation of any other country, it may be the case that the high magnitude correlations found 

for SLI samples are actually attributable to the sample’s country of origin. We are unable to 

parse these relations based on the analyses run in the present study, so in line with recent work 
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on math achievement (Wei, Lenz, & Blackorby, 2013), future work should examine whether the 

association between the HME and children’s math achievement differs in samples with learning-

related difficulties. 

Across all assessment moderators tested, results revealed that differences in how the 

HME and math achievement were measured significantly impacted the magnitude of the 

correlation between the HME and children’s math achievement. Overall, this is an important 

finding because inconsistent measurement methods, utilizing a wide array of measurement 

instruments for both the HME and math, are common in HME research. Thus, it makes sense 

that studies within the same research area have reflected such disparate findings due to 

measurement inconsistency. Focusing first on how the nuances in HME assessment impacted 

how closely the HME was associated with children’s math achievement, we found that contrary 

to our hypothesis, there were no significant differences found for correlations that included HME 

measures of direct activities (i.e., math-related activities that directly targeted math skills) versus 

indirect activities (i.e., math-related activities that incidentally targeted math skills; LeFevre et 

al., 2009; Skwarchuk et al., 2014). On the other hand, our hypothesis that parent attitudes and/or 

beliefs toward math would have lower magnitude correlations with children’s math achievement 

than direct activities was partially supported, with parent attitudes and/or beliefs toward math 

demonstrating lower magnitude correlations than HME measures that included a combination of 

direct and indirect activities or only indirect activities. Our hypothesis that parent expectations 

for children’s math achievement would have the highest magnitude correlations of all HME 

components was also partially supported. Specifically, parent expectations for their children’s 

math achievement had significantly higher magnitude correlations with children’s math 
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achievement than HME measures that included a combination of direct and indirect math 

activities or spatial activities.  

Surprisingly, the correlations that included parent attitudes and/or beliefs toward math 

were not found to be any weaker than the correlations that included parent expectations for their 

children’s math achievement. This violated our hypothesis, based on meta-analytic work on the 

association between parent involvement and children’s achievement outcomes, that parent math 

expectations would be the most influential facet of the HME overall and the most important 

social influence in the HME. Although parent math expectations were found to matter more than 

math-related activities, our results showed that any parent social influences related to math, both 

in terms of affective factors and expectations, were equally important for children’s math 

performance. Overall, these nuanced differences driven by HME measurement inconsistency 

point to the need for the creation of a standardized measure of the HME that can be used across 

different studies and samples so that differences found between studies may reflect true 

differences, rather than measurement differences. 

Looking specifically at how children’s math skills were assessed both the math 

assessment used and the math domain measured were found to be significant moderators. In 

comparison to researcher-created math assessments, only the WJ was more closely linked to the 

HME. Importantly, this difference is likely not explained by the fact that the WJ is a standardized 

assessment, while researcher-created assessments are unstandardized, because our moderator 

results showed that the correlations between the HME and children’s math achievement were 

statistically the same for standardized versus unstandardized math assessments. Relatedly, the 

differences found for the WJ could be attributable to the fact that only two studies and three 

effect sizes included the WJ. Although the two studies had many differences (Niklas et al., 2016; 
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Skwarchuk, 2009), like samples from different countries, and HME assessment of different 

components, one feature they had in common was their inclusion of multiple math domains in 

their effect sizes. However, given that the average weighted correlation for math assessed by 

multiple math domains of r = .14 is very similar to the average weighted correlation found 

without accounting for moderators (r = .13), and math assessed by the WJ  had a significantly 

higher magnitude correlation of r = .48, the measurement of multiple math domains is probably 

not driving these results. It may be the case that there is something about the WJ, other than 

being standardized, and including subtests that assess multiple math domains, that is driving the 

large effect sizes found, but the reasons cannot be clarified by the present analyses.  

As previously mentioned, when looking at the moderating effect of math domain, our 

results revealed that math assessments measuring multiple math domains showed the highest 

magnitude correlations between the HME and children’s math achievement compared to all other 

math domains, except arithmetic operations. The finding that multiple math domains result in 

stronger effects is not surprising due to the multi-faceted nature of math ability in children, 

which is made up of many underlying skills (Geary, 2004). Accordingly, any assessment of math 

that captures the broad range of skills that underlie math ability is likely to provide a more 

complete measure of math ability overall (Purpura & Lonigan, 2013). Thus, future HME work 

would do well to measure multiple math domains at once in order to capture the role of the HME 

in children’s math achievement more fully. 

Another important finding on the moderating effects of math domain was that math 

assessed as arithmetic operations was more strongly associated with the HME than math 

assessed in the domain of numerical relations. Some previous work suggests that both numbering 

and numerical relation skills are needed in order for arithmetic operations skills to develop 
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(Aunio & Niemivirta, 2010), which aligns with the perspective that children’s early math skills 

are cumulative and build on each other, becoming increasingly complex over time (Sarama & 

Clements, 2009). Thus, the fact that the HME emerges as a stronger influence in complex math 

domains that require children to draw on pre-existing foundational math skills may be an 

indication that the benefit of the HME is that it gives children a foundation of math skills that can 

help them build up more complex math knowledge and understanding.  

 Our moderator analyses also highlighted the importance of methodological differences in 

HME-math achievement studies, as many math assessment and study features were found to 

influence correlation magnitudes. In fact, all math assessment features tested were found to be 

significant sources of heterogeneity, including whether math was measured using a standardized 

or unstandardized assessment, a composite or single assessment, a timed or untimed assessment, 

or a symbolic or non-symbolic assessment. Alongside our findings of significant moderation by 

math assessment and math domain, these results mean that caution should be taken when 

choosing math assessments to investigate the link between the HME and children’s math 

achievement, as various assessment features may drive variability in results. Therefore, the best 

approach to take when investigating the HME-math achievement link may be to include multiple 

math assessments in order capture the wide array of possible math assessment differences. One 

final moderator result worth noting was that studies that reported concurrent correlations were 

found to be stronger than studies that reported longitudinal correlations. Specifically, when the 

HME and children’s math achievement were measured at the same time point, a higher 

magnitude correlation was found, whereas assessments of the HME and children’s math 

achievement that occurred at different times points had lower magnitude correlations. This also 

points to the need for caution in HME study design, as measurement timing is likely to play a 
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part in the consistency of study results. Thus, a study that can incorporate both concurrent and 

longitudinal relations between the HME and children’s math achievement would be ideal. 

 Overall, the present meta-analysis provides a robust estimate of the true correlation 

between the HME and children’s math achievement. Although our tests of publication bias were 

significant, our p-curve analysis confirmed that the results in our study sample had evidential 

value. Furthermore, our sensitivity analyses indicated that our findings were almost identical 

across different values of ρ and if a study reporting almost 30% of all effect sizes (Cheung, 2013) 

was removed. Based on these statistical tests and sensitivity analyses, the meta-analytic results 

reported here most likely represent true, robust effects. 

Conclusion 

 In general, the small, positive average weighted correlation of r = .13 found between the 

HME and children’s math achievement indicates that although the HME is significantly 

associated with children’s math achievement, with a higher degree of parent-child math 

interaction and socialization associated with better child math performance, the association is 

limited. One reason behind the small HME-math achievement link may be the widespread use of 

surveys to measure the HME. There may be important aspects of the HME, like the quality of 

math-related interactions instead of just their frequency, which surveys cannot properly capture, 

for which direct observation techniques would be better suited. Although the low magnitude 

correlation found for parent math talk, which is typically measured through direct observation, 

may seem to contradict this proposition, it may be the actual HME component of parent math-

related utterances that drives the lower magnitude correlations between parent math talk and 

children’s math achievement, rather than the observational measurement techniques used. Thus, 

further measurement work based on sound psychometric theory in order to create and pilot 
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observational HME instruments is needed in future HME research. In addition, based on 

moderator results demonstrating that measurement inconsistencies in how the HME and math 

achievement are assessed are largely driving study heterogeneity, future HME work that employs 

survey-based measurement should aim to include as many facets of the HME and math 

achievement as possible in order to get a more complete picture  of the true relations. 

 Although the meta-analytic results here did not demonstrate a strong relation between the 

HME and children’s math achievement, the fact that a significant correlation was found between 

the two domains provides evidence to support the importance of home-based math learning. 

Although other individual, cultural, social, and environmental factors may create differences in 

the HME that impact its association with children’s math achievement, the HME was found to be 

a positive influence on children’s math achievement, overall. Importantly, more empirical work 

needs to be done to implement consistent and comprehensive measurement of the HME, in order 

to fully understand its role in children’s math achievement. Given that our analysis revealed that 

there are unmeasured characteristics driving our results, it is important to conduct more research 

on the HME and children’s math achievement using a battery of HME and math assessments, 

while including diverse samples across a range of countries in order to determine how the HME 

can be utilized for early math intervention. 
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Table 1. Article coding key 
Category Value Description 
Sample Characteristics  
Grade 1 = PK/KG only 
 2 = Combination PK/KG and elementary school 
 3 = Elementary school only 
 4 = Combination elementary and middle school 
 5 = Middle school only 
Country  1 = United States 
 2 = Canada 
 3 = Netherlands  
 5 = Germany 
 6 = Greece 
 7 = Italy 
 8 = China 
 9 = Chile 
 11 = Australia 
 10 = Other 
Special Sample Characteristics 1 = None, average sample 
 2 = Low SES 
 3 = High minority (30% or more) 
 4 = All one ethnicity (75% or more) 
 5 = All girls 
 6 = All girls 
 7 = SLI sample (30% or more) 
 8 = Other 
 9 = High SES 
HME Assessment Characteristics 
HME Component 2 = Direct activities 
 3 = Indirect activities 
 4 = Attitudes and/or beliefs 
 5 = Math expectations 
 6 = Spatial activities 
 7 = Math talk 
 9 = Combination of direct and indirect activities 
 11 = Combination of activities and attitudes 

and/or beliefs or expectations HME Calculation 1 = Latent factor score 
 2 = Sum score 
 3 = Single item 
Math Assessment Characteristics 
Math Assessment 1 = Researcher-created 
 2 = KeyMath 
 4 = TEMA 
 5 = WJ 
 6 = WM 
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Table 1. Article coding key – continued 
 
Category Value Description 
Math Assessment – continued 7 = UENT-R 
 8 = PENS 
 9 = CATM 
 11 = CMA 
 18 = TEDI-MATH 
 13 = Multiple math assessments 
 12 = Other 
Math Domain 2 = Arithmetic operations 
 3 = Numerical relations 
 4 = Numbering 
 10 = Multiple math domains 
 11 = Spatial skills 
Symbolic 1 = Symbolic 
 2 = Non-symbolic 
 3 = Combination of both 
Timed 1 = Timed 
 2 = Untimed 
 3 = Combination of both 
Composite 1 = Composite 
 2 = Single Measure 
Standardized 1 = Standardized 
 2 = Unstandardized 
 3 = Combination of both 
Study Characteristics  
Longitudinal 1 = Longitudinal relation 
 2 = Concurrent relation 

Note. For some moderators, numbering is out of order with missing values due to 
changes to the coding scheme; TEMA = Test of Early Mathematics Ability; WJ = 
Woodcock Johnson-III Tests of Achievement; WM = Woodcock–Muñoz Batería 
III—Spanish adaptation of the Woodcock–Johnson Tests of Achievement; 
Utrecht Early Numeracy Test- Revised; PENS = Preschool Early Numeracy Skills 
test; CMA = Child Math Assessment; SLI = Specific Language Impairment 
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Table 2. Math assessment descriptions 
Assessment Description Reliability (a) 
Key Math-3 Diagnostic 
Assessment (KeyMath) 

The KeyMath-31 is comprised of ten subtests, 
including Numeration, Algebra, Geometry, 
Measurement, Data Analysis, and Probability, 
which measure basic math concepts, Mental 
Computation and Estimation, Addition and 
Subtraction, Multiplication and Division, which 
measure math operations, and Foundations of 
Problem Solving and Applied Problem Solving, 
which measure math applications, all based on the 
National Council of Teachers of Mathematics 
Principles and Standards for School Mathematics. 
The tests are untimed, norm-referenced, and 
available for ages 4 years, 6 months through 21in 
alternate forms A and B to assesses key 
mathematical concepts and skills.1,2 

.86 - .991 

Test of Early Mathematics 
Ability (TEMA), 2 and 3 

The TEMA3 is a norm-referenced or diagnostic test 
used to identify the level at which children ages 3 to 
8.11 years are performing in a variety of specific 
mathematics skills based on the National Council of 
Teachers of Mathematics curriculum 
requirements.4,5 The assessment takes 40 minutes 
and is available in alternate forms A and B.4 

.925 

Woodcock-Johnson III/IV 
Tests of Achievement (WJ) 

The WJ6 is a norm-referenced assessment, which 
includes four subtests (Calculation, Math Fluency, 
Applied Problems, and Quantitative Concepts) that 
measure numeracy, arithmetic calculation, and math 
reasoning ability. The assessment items are 
presented both visually and orally and progressively 
increase in difficulty. Alternate forms A and B are 
available for every subtest.6,7 

.85 - .926 

Woodcock-Muñoz Batería 
III (WM) 

The WM8 is the Spanish-language version of the 
WJ, which has all the same features and subtests as 
the WJ but was developed with native Spanish 
speakers.8,9 

.908 

Utrecht Early Numeracy 
Test – Revised (UENT-R) 

The UENT-R10,11 is comprised of 40 items, which 
measure numerous foundational mathematical 
concepts, namely comparison, classification, one-
to-one correspondence, counting, seriation, and 
general number knowledge.  The test is given one 
on one, with alternate forms A and B available and 
must be completed within 30 minutes.12 

.84 - .9012 
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Table 2. Math assessment descriptions – continued  
 
Assessment Description Reliability (a) 
Preschool Early Numeracy 
Skills test (PENS) 

The PENS13 is a researcher-created math 
assessment comprised of three subtests, including 
Numbering, Numerical Relations, and Arithmetic 
Operations, which measure the breadth and depth of 
children’s numeracy competence from ages 3 to 5. 
The unstandardized, untimed test is used as a 
progress-monitoring assessment or screener and 
measures children’s knowledge of symbolic 
numbers and mathematical terms and concepts with 
24 total items of increasing difficulty.13,14  

 

Deutscher Mathematiktest 
für erste Klassen (“German 
Mathematical Test for first 
graders”; DEMAT 1+) 

The DEMAT 1+15 is a German-language, 
curriculum-based, standardized math assessment 
that includes nine subtests, which measure 
children’s mathematical abilities, like arithmetic 
calculation and symbolic number knowledge, in 
order to pinpoint children’s math-related strengths 
and weaknesses. The DEMAT exists in different 
forms for grades 1 through 4 and is administered as 
a group test with a 40-minute limit or as a single 
test with a limit of 20-35 minutes. Alternate forms 
A and B available for each grade level.15,16 

.8916 

Child Math Assessment 
(CMA) 

The CMA17 is a researcher-developed math 
assessment based on the standards set by the 
National Council of Teachers of Mathematics 
(2000), which measures 3- to 5-year-old children’s 
informal mathematical knowledge. The CMA is 
administered individually and is comprised of 
fifteen tasks that cover five math domains: number 
sense, arithmetic, geometric reasoning, pattern 
knowledge, and measurement.18 

.9018  

Individual Growth & 
Development Indicators of 
Early Numeracy (IGDIs-
EN) 

The IGDIs-EN19 is a standardized, curriculum-
based math assessment for 3- to 5-year old children 
that is administered individually for use in universal 
screening and progress monitoring of children’s 
early math skills. The subtests include one timed 
assessment—oral counting (number of items 
varies)—and three untimed assessments: number 
naming (63 items), quantity comparison (32 items), 
and one-to-one correspondence counting (20 
items).19,20 

.62-.91 (test-
retest)20 
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Table 2. Math assessment descriptions – continued  
 
Assessment Description Reliability (a) 
Bracken Basic Concepts 
Scale- 3rd Edition: 
Receptive (BBCS:3-R) and 
School Readiness 
Composite (BBCS:3-SRC) 

The BBCS:3-R and BBCS:3-SRC21 are 
standardized assessments for children ages 3 to 6 
years 11 months, which non-verbally measure 
children’s basic math, cognitive, and language 
development. There are ten assessment domains, 
which measure color, shape, size, number, and 
other concepts not related to math. Each subtest is 
comprised of 10-22 questions that measure 
children’s receptive knowledge by children to 
indicate their response to each item by pointing to 
the correct answer.20 

.78-.9721 

Performance Indicators in 
Primary School (PIPS)  

The PIPS22 is a standardized assessment that is 
group-administered at beginning of primary school 
(4-5 years old), and subsequently, at the end of the 
first (5-6 years old), third (7-8 years old), fifth (9-10 
years old), and seventh grades (11 years old). It 
measures children’s reading, math, and social 
development. The math assessments measure basic 
knowledge of math language, counting, simple 
arithmetic, number and shape recognition, and more 
advanced mathematical procedures as children 
advance in school. Different test items of increasing 
difficulty are administered to children as they 
progress in age/grade.22,23 

.9224  

Early Childhood 
Longitudinal Study- 
Kindergarten Cohort Math 
assessment (ECLS-K 
Math) 

The ECLS-K25 math assessments were administered 
in kindergarten (fall and spring) and first grade to 
measure children’s conceptual and procedural math 
knowledge and problem-solving ability based on 
national and state standards for mathetmatics 
development. All assessments were untimed and 
given orally and individually based on a 
standardized protocol.26 

.92-.9426 

The Research-Based Early 
Mathematics Assessment 
Short-Form (REMA-S) 

The REMA-S27 is a researcher-created, curriculum-
based math assessment that measures 3- to 5-year-
old children’s early math knowledge in the domains 
of numbers (recognition, comparison, sequencing, 
counting), arithmetic, and geometry. The REMA-S 
is untimed and includes 19 total items, given orally 
by a trained test administrator and is based on 
learning trajectories.27,28 

1.00 (item 
reliability)28 
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Table 2. Math assessment descriptions – continued  
 
Assessment Description Reliability (a) 
Test for Diagnostic 
Assessment of 
Mathematical Disabilities 
(TEDI-MATH) 

TEDI-MATH29 is a standardized assessment 
designed for diagnosing math-related disorders in 
children up to third grade (4-9 years old). TEDI-
MATH includes six subtests that measure four 
math-related domains: number logic (classification 
and seriation), counting, numerosity, and symbolic 
number knowledge (including arithmetic 
computation). The test is untimed and administered 
individually.29,30 

.70-.9729 

California Achievement 
Test Mathematics subtest 
(CATM) 

The CAT31 is a normed, standardized test 
administered to students individually, which 
assesses reading, language, and math ability for 
grades K-12, using both multiple choice and short 
answer questions (Tiegs & Clark, 1977). The 
CATM is comprised of six mathematical subtests 
and 92 items, which are based on state and district 
curricula, and measure children’s computation skills 
and concepts and applications (numeration, 
problem-solving, measurement, and geometry).31,32 

.9832 

Diagnostic Test for Basic 
Mathematical Concepts 
(DTBMC) 

The DTBMC33 is a standardized, curriculum-based 
math assessment comprised of five subtests, which 
measure basic math knowledge of ordinal numbers, 
cardinal numbers and basic math concepts, number 
identification, word problems, and basic arithmetic, 
with tasks that include items of increasing 
difficulty. The DTBMC can be administered 
individually or in a group setting and is not 
timed.33,34 

.94 (test-
retest)35 

Stanford Diagnostic 
Mathematics Test, Fourth 
Edition (SDMT4) 
Computation subtest 

The SDMT36 is a nationally-normed test available 
in different forms for grades 2 through 12, which 
includes two subtests (Concepts and Applications, 
Computation) that measure children’s knowledge of 
the basic math concepts and skills that are 
foundational to the development of problem-solving 
ability.37 The Computation subtest includes 20 
grade-level questions that require the application of 
addition and subtraction procedures with a 25-
minute time-limit for completion.38 

.8538 

Note. Citations: 1Connolly, 2007; 2Skwarchuk, Sowinski, & LeFevre, 2014; 3Ginsburg & 
Baroody, 2003; 4https://www.parinc.com/Products/Pkey/442; 5Methe, Hintze, & Floyd, 2008; 
6Woodcock, McGrew, & Mather, 2001; 7Skwarchuk, 2009; 8Muñoz-Sandoval, Woodcock, 
McGrew, & Mather, 2005; 9del Rio, Susspereguy, Strasser, & Salinas, 2017;10Van Luit, Van de 
Rijt and Pennings, 1994; 11Van Luit & Van de Rijt, 2009; 12Passolunghi, Lanfranchi, Altoè, & 
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Sollazzo, 2015; 13Purpura, 2009; 14Purpura, Reid, Eiland, & Baroody, 2015; 15Krajewski, 
Küspert, Schneider, & Visé, 2002; 16Niklas & Schneider, 2014; 17Klein, Starkey, & Wakely, 
2000; 18Klein, Starkey, Clements, Sarama, & Iyer, 2008; 19Hojnoski & Floyd, 2013; 20Missall, 
Hojnoski, Caskie, & Repasky, 2015; 21Bracken, 2006; 22Tymms & Albone, 2002; 23Bull, Espy, 
& Wiebe, 2008; 24Tymms, Merrell, Hawker, & Nicholson, 2014; 25NCES, 2002; 26Puccioni, 
2015; 27Weiland et al., 2012; 28Zippert & Rittle-Johnson, 2018; 29Gregoire, Noël, & Van 
Nieuwenhoven, 2004; 30Yildiz, Sasanguie, De Smedt, & Reynovet, 2018; 31Tiegs & Clark, 1977; 
32Mboya, 1986; 33Ikäheimo, 1996; 34Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; 35Silinskas, 
Leppanen, Aunola, Parrila, & Nurmi, 2010; 36 Lichtenberger, 2008; 37Wang, 2004; 38Vukovic, 
Roberts, & Wright, 2013. 
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Figure 1. Article selection flow chart. 

 
  

n = 1725 studies yielded 

from literature search 

n = 535 studies retained based 

on title 

n = 431 studies removed based 

on reviewing abstracts 

 n = 52 studies removed based 

on reviewing methods or 

manuscripts 

k = 52 total studies 

included 
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Figure 2. Effect size estimates (x-axis) for sample characteristic moderators, including grade, 
country of origin, and special sample characteristics with the number of effect sizes (n) for each 
moderator subgroup (left column) and the correlation coefficient (r) and its corresponding 95% 
confidence interval (far right column). 
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Figure 3. Effect size estimates (x-axis) for HME assessment moderators, including HME 
component and HME calculation with the number of effect sizes (n) for each moderator 
subgroup (left column) and the correlation coefficient (r) and its corresponding 95% confidence 
interval (far right column). 
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Figure 4. Effect size estimates (x-axis) for math assessment moderators, including math 
assessment and math domain with the number of effect sizes (n) for each moderator subgroup 
(left column) and the correlation coefficient (r) and its corresponding 95% confidence interval 
(far right column). 
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Figure 5. Effect size estimates (x-axis) for math assessment moderators, including whether the 
assessment was symbolic, timed, a composite, or standardized, with the number of effect sizes 
(n) for each moderator subgroup (left column) and the correlation coefficient (r) and its 
corresponding 95% confidence interval (far right column).  
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Figure 6. Effect size estimates (x-axis) for the study moderator of whether the study reported 
longitudinal or concurrent effect sizes with the number of effect sizes (n) for each moderator 
subgroup (left column) and the correlation coefficient (r) and its corresponding 95% confidence 
interval (far right column). 
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Figure 7. Enhanced funnel plot of the multilevel correlated effects meta-analysis results with the 
average weighted correlation of r = .14 and confidence intervals on the 90th (white), 95th (gray), 
and 99th (dark gray) percentiles. 
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Figure 8. P-curve analysis results showing that a significant right skew and non-significant 
results at 33% power for both the full and half p-curve tests, indicating evidential value and a 
lack of p-hacking in our study sample. 
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Figure 9. Trim-and-fill plot of the random effects meta-analysis average weighted correlation of 
r = .08 and confidence intervals on the 90th (white), 95th (gray), and 99th (dark gray) percentiles. 
The trim-and-fill method does not allow for the inclusion of a multilevel object, so the average 
weighted correlation coefficient that did not utilize multilevel correlated effects modeling was set 
as the mean effect size (r = .08). 
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APPENDIX A 
 

RESULTS INCLUDING CHEUNG, 2013 
 

Overall Average Weighted Correlation Between the Home Math Environment and 

Children’s Math Achievement 

Results of the random-effects analysis, which did not account for study dependence, 

yielded an average weighted correlation of .07 [.05-.08], SE=.01, p < .0001. However, given that 

only 52 studies resulted in a sample of 684 effect sizes, a multilevel correlated effects analysis 

was conducted to account for the large number of effect sizes drawn from the same study 

sample. The results from the multilevel correlated effects analysis yielded a higher average 

weighted correlation of .13 [.08, .19], SE = .03, p < .0001. Given the large difference in these 

estimates, with the results from the multilevel correlated effects analyses yielding an effect size 

that was nearly twice as large as the model that did not control for study, it appears that not 

accounting for study dependence drastically impacted our results, which provides support for the 

methodological decision to also account for study dependence when conducting follow-up 

moderator analyses. 

Looking next at the results of the tests for study heterogeneity, significant heterogeneity 

was found, with Q [683] = 4639.13, p < .0001. The total heterogeneity of the r correlation 

coefficient was estimated to be high, I2 = 85.28%. Variance between studies was also found to be 

significant based on a 95% confidence interval, σ2 = 0.04 [0.02-0.06]). Thus, multiple moderator 

analyses were conducted, one moderator at a time, in order to determine the sample, assessment, 

and study characteristics that may have significantly contributed to study heterogeneity.  
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Moderator Analyses for Sample Characteristics 

All moderators were entered as categorical, except for age, which was entered as 

continuous. Age was a significant source of heterogeneity for the correlation between the HME 

and children’s math achievement (F[1, 656] = 10.39, p = .0013, σ2 = .04 [.02, .06], k = 658) with 

a -.01 unit decrease in the correlation between the HME and children’s math achievement for 

every 1-year increase in age. The test for residual heterogeneity was significant (QE[656] = 

2211.72, p < .0001), indicating that even after accounting for age, I2 = 70.34% of the variability 

in effect sizes was left unexplained. 

All moderation analysis results for sample characteristic moderators are presented in 

Figure 2. The results of the overall omnibus test with grade as the moderator showed that grade 

was a significant source of heterogeneity (F[5, 638] = 7.95, p < .0001, σ2 = .04 [.02, .07], k = 

643) in the average weighted correlation between the HME and children’s math achievement. 

Study samples that included only PK/KG children (r = .14 [.08, .20], p < .0001, n = 526) or only 

elementary school children (r = .12 [.06, .19], p = .0002, n = 75) had average weighted 

correlations that were positive and significantly greater than zero, but samples that included a 

combination of PK/KG and elementary school children (r = .20 [-.001, .40], p = .0519, n = 30), a 

combination of elementary and middle school children (r = .05 [-.21, .30], p = .7204, n = 8), and 

only middle school children (r = .17 [.23, .57], p = .4044, n = 4) did not. When comparing 

differences between grades, pairwise t-test results showed that study samples comprised of only 

elementary school children (b = -0.02 [-0.02, -0.01], p < .0001) demonstrated significantly lower 

correlations between the HME and children’s math achievement than samples made up of only 

PK/KG children. The test for residual heterogeneity was also significant (QE[638] = 4458.82, p < 
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.0001), indicating that even after accounting for grade, I2 = 85.69% of the variability in effect 

sizes was left unexplained. 

 The results of the overall omnibus test with country as the moderator showed that the 

study sample’s country of origin was a significant source of heterogeneity (F[10, 674] = 6.04, p 

< .0001, σ2 = .02 [.01,.04], k = 684) in the correlation between the HME and children’s math 

achievement. Samples from the United States (r = .08 [.02, .14], p = .0083, n = 250), Canada (r = 

.22 [.09, .34], p = .0005, n = 37), the Netherlands (r = .49 [.33, .66], p < .0001, n = 10), Greece (r 

= .23 [.09, .38], p = .0014, n = 11), and Australia (r = .26 [0.04, 0.49], p = .0231, n = 6) had 

average weighted correlations that were positive and significantly different from zero, but 

samples from Germany (r = .09 [-.22, .39], p = .5792, n = 4), Italy (r = .05 [-.25, .35], p = .7475, 

n = 21), China (r = .08 [-0.04, 0.19], p = .1809, n = 241), Chile (r = .05 [-0.16, 0.27], p = .6196, 

n = 36), and the other countries category (r = .03 [-.13, .18], p = .7471, n = 68) did not. When 

comparing differences between countries of origin, pairwise t-test results showed that, in 

comparison to the United States, study samples from the Netherlands (b = 0.41 [0.23, 0.59], t(9) 

= 4.58, p < .0001) demonstrated significantly higher correlations between the HME and 

children’s math achievement, but all other countries of origin did not significantly differ from 

United States samples, including China (b = -0.004 [-0.12, 0.11], t(9) = -0.06, p = .9508). The 

test for residual heterogeneity was significant (QE[674] = 4348.23, p < .0001), indicating that 

even after accounting for the sample’s country of origin, I2 = 84.50% of the variability in effect 

sizes was left unexplained. 

Finally, the results of the overall omnibus test with special sample characteristics as the 

moderator showed that they were a significant source of heterogeneity (F[9, 675] = 3.49, p = 

.0003, σ2 = .03 [.02, .06], k = 684) in the average weighted correlation between the HME and 
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children’s math achievement. Study samples that were average/typically-developing (r = .16 

[.08, .23], p < .0001, n = 135), all one ethnicity (r = .11 [.03, .19], p = .0046, n = 376), all girls (r 

= .16 [.05, .26], p = .0046, n = 14), all boys (r = .15 [.05, .26], p = .0044, n = 13), or SLI (r = .54 

[.17, .91], p = .0044, n = 4) had average weighted correlations that were positive and 

significantly different from zero, but samples that were low SES (r = .10 [-.01, .22], p = .0725, n 

= 96), high minority (r = .08 [-0.04, 0.20], p = .1996, n = 18), high SES (r = .13 [-0.25, 0.51], p = 

.4952, n = 7), or from the other category did not (r = .05 [-.32, .42], p = .7860, n = 7). When 

comparing across special sample characteristics, pairwise t-tests showed that in comparison to 

average/typically-developing study samples no significant differences in the average weighted 

correlation between the HME and children’s math achievement were found due to special sample 

characteristics. Interestingly, low versus high SES samples (b = 0.03 [-0.37, 0.43], t(8) = 0.15, p 

= .1449), and samples that were made up of all boys versus all girls (b = -0.002 [-0.10, 0.09], t(8) 

= -0.04, p = .9680) did not show significantly different correlations between the HME and 

children’s math achievement. The test for residual heterogeneity was significant (QE[675] = 

4489.14, p < .0001), indicating that even after accounting for special sample characteristics, I2 = 

84.96% of the variability in effect sizes was left to be explained. 

Moderator Analyses for HME Assessment Characteristics 

All moderator results for HME assessment moderators are presented in Figure 3. The 

results of the overall omnibus test with HME component as the moderator showed that the 

specific HME component measured was a significant source of heterogeneity (F[8, 676] = 6.47, 

p < .0001, σ2 = .01 [.01, .03], k = 684) in the average weighted correlation between the HME and 

children’s math achievement. HME measures that assessed direct HME activities (r = .12 [.06, 

.18], p < .0001, n = 94), indirect HME activities (r = .06 [.01, .12], p = .0173, n = 199), math 
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expectations (r = .24 [.14, .33], p < .0001, n = 22), parent math talk (r = .14 [.05, .23], p = .0016, 

n = 210), a combination of direct and indirect HME activities (r = .18 [.10, 026], p < .0001, n = 

45), and a combination of activities and attitudes and/or beliefs or expectations (r = .20 [.05, .34], 

p = .0085, n = 15) had average weighted correlations that were positive and significantly 

different from zero, but HME measures that assessed parent math attitudes and/or beliefs only (r 

= .07 [-.001, .14], p = .0540, n = 91) or spatial activities (r = .09 [-.08, .26], p = .2947, n = 8) did 

not. When comparing between HME components, pairwise t-test results showed that, contrary to 

our hypothesis, no significant differences in the average weighted correlation between the HME 

and children’s math achievement were found for indirect HME activities (b	= 0.01 [-0.01, 0.04], 

t[7] = 0.85, p = .9517) when compared to direct HME activities. Our pairwise t-test results with 

parent math expectations as the reference group also violated our hypothesis, showing that none 

of the other HME components had significantly lower magnitude average weighted correlations 

with children’s math achievement, and instead, HME measures that included a combination of 

direct and indirect math activities demonstrated significantly higher average weighted 

correlations (b = 0.08 [0.04, 0.13], t[7] = 3.67, p = .0002) with children’s math achievement. The 

test for residual heterogeneity was not significant (QE[676] = 643.71, p = .8090), indicating that 

after accounting for the specific HME component measured no significant variability in effect 

sizes remained. 

For the HME calculation moderator, the results of the overall omnibus test showed that 

the specific method of calculation used to measure the HME was a significant source of 

heterogeneity (F[3, 681] = 11.08, p < .0001, σ2 = .04 [.02, .06], k = 684) in the average weighted 

correlation between the HME and children’s math achievement. HME calculations that utilized 

latent factor scores (r = .13 [.07, .19], p < .0001, n = 136), sum scores (r = .16 [.10, .21], p < 
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.0001, n = 443), or single items (r = .08 [.01, .15], p = .0261, n = 105) had average weighted 

correlations that were positive and significantly different from zero. When comparing between 

HME calculation types, with latent factor scores as the reference group, pairwise  t-test results 

showed that no significant differences in the average weighted correlation between the HME and 

children’s math achievement were found (sum scores: b = 0.02 [-0.01, 0.06], t[2] = 1.24, p = 

.2145; single items: b = -0.06 [-0.11, 0.00], t[2] = -1.83, p = .0675). Thus, contrary to our 

expectations, HME scores calculated as latent factor scores did not result in significantly higher 

average weighted correlations between the HME and children’s math achievement. The test for 

residual heterogeneity was significant (QE[681] = 2635.78, p < .0001), indicating that even after 

accounting for the HME calculation method used, I2 = 85.31% of the variability in effect sizes 

was left to be explained. 

Moderator Analyses for Math Assessment Characteristics 

All moderator results for math assessment moderators are presented in Figure 4. The 

results of the overall omnibus test with math assessment as the moderator showed that the math 

assessment used to measure children’s math achievement was a significant source of 

heterogeneity (F[13, 671] = 4.06, p < .0001, σ2 = .04 [.02, .06], k = 684) n the average weighted 

correlation between the HME and children’s math achievement. Researcher-created assessments 

(r = .13 [.06, .20], p = .0001, n = 416), the KeyMath (r = .10 [.01, .19], p = .0290, n = 13), the 

WJ (r = .48 [.25, .70], p < .0001, n = 3), the WM (r = .19 [.10, .27], p < .0001, n = 11), the 

UENT-R (r = .20 [.09, .30], p = .0003, n = 12), the CATM (r = .19 [.07, .32], p = .0030, n = 3), 

the TEDI-MATH (r = .15 [.04, .26], p = .0075, n = 11), parent-report of children’s math 

achievement (r = .19 [.09, .28], p = .0002, n = 16), or the other math assessment category (r = .12 

[.05, .20], p = .0008, n = 95) had average weighted correlations that were positive and 
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significantly different from zero, but the TEMA (r = -.08 [-.25, .08], p = .3174, n = 30), the 

PENS (r = .16 [-.12, .43], p = .2742, n = 41), or the CMA (r = .29 [-.09, .67], p = .1394, n = 4) 

did not. Pairwise t-test results showed that, in comparison to researcher-created math 

assessments, the WJ (b = 0.35 [0.12, 0.57], t[12]= 3.03, p = .0025) had significantly higher 

average weighted correlations between the HME and children’s math achievement, and 

correlations for the TEMA were significantly lower (b = -0.21 [-0.39, -0.04], t[12] = -2.39, p = 

.0173). The test for residual heterogeneity was also significant (QE[671] = 4480.20, p < .0001), 

indicating that even after accounting for the specific math assessment used, I2 = 85.02% of the 

variability in effect sizes was left to be explained. 

The results of the overall omnibus test with math domain as the moderator showed that 

the math domain assessed was a significant source of heterogeneity (F[5, 679]) = 8.36, p < 

.0001, σ2 = .03 [.02, .06], k = 684) in the average weighted correlation between the HME and 

children’s math achievement. When arithmetic operations (r = .12 [.06, .18], p < .0001, n = 117), 

numerical relations (r = .09 [.03, .15], p = .0024, n = 195), numbering (r = .10 [.04, .16], p = 

.0014, n = 111), or multiple math domains (r = .14 [.09, .20], p < .0001, n = 257) were assessed 

the average weighted correlation between the HME and math achievement was positive and 

significantly different from zero, but when the spatial domain was assessed it was not (r =-.00 [-

.14, .14], p = .9919, n = 4). According to pairwise t-test results, in comparison to math measures 

assessing multiple math domains, all other math domains (numerical relations: b	= -0.05 [-0.08, -

0.02], p = .0003; numbering: b = -0.05 [-0.08, -0.01], t[4] = -2.67, p = .0077; spatial: b = -0.15 [-

0.28, -0.01], t[4] = -2.15, p = .0320), with the exception of arithmetic operations (b = -0.02 [-

0.05, 0.01], t[4] = -1.38, p = .1667), had significantly lower average weighted correlations 

between the HME and children’s math achievement. The test for residual heterogeneity was also 
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significant (QE[679] = 4597.82, p < .0001), indicating that even after accounting for the specific 

math domain assessed, I2 = 85.23% of the variability in effect sizes was left unexplained. 

For the symbolic math assessment moderator, the results of the overall omnibus test 

showed that whether math achievement was assessed using a symbolic, non-symbolic, or 

combination of symbolic and non-symbolic assessments was a significant source of 

heterogeneity (F [3, 681] = 13.29, p < .0001, σ2 = .04 [.02, .06], k = 684) in the average weighted 

correlation between the HME and children’s math achievement. Symbolic (r = .15 [.09, .20], p < 

.0001, n = 337), non-symbolic (r = .12 [.06, .18], p < .0001, n = 93), and combined symbolic and 

non-symbolic (r = .13 [.07, .18], p < .0001, n = 254) math assessments had average weighted 

correlations that were positive and significantly different from zero. According to pairwise t-tests 

with symbolic math assessments as the reference group, the average weighted correlation 

between the HME and children’s math achievement was significantly lower when math was 

assessed using a non-symbolic math assessment (b = -0.03 [-0.05, -0.01], t[3] = -2.41, p = .0162) 

or a combined symbolic and non-symbolic math assessment (b = -0.02 [-0.03, -0.01], t[3] = -

3.68, p = .0003). The test for residual heterogeneity was also significant (QE[681] = 4565.45, p < 

.0001), indicating that even after accounting for whether the math assessment was symbolic, I2 = 

85.08% of the variability in effect sizes was left to be explained. 

For the timed math assessment moderator, the results of the overall omnibus test showed 

that whether math achievement was assessed using a timed, untimed, or combination of timed 

and untimed assessments was a significant source of heterogeneity (F[3, 681] = 14.14, p < .0001, 

σ2 = .03 [.02, .06], k = 684) in the average weighted correlation between the HME and children’s 

math achievement. Math assessed by measures that were timed (r = .07 [.004, .13], p = .0386, n 

= 67), untimed (r = .14 [.09, .19], p < .0001, n = 607), or a combination of timed and untimed (r 
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= .14 [.07, .21], p < .0001, n = 10) had average weighted correlations that were positive and 

significantly different from zero. In comparison to math assessed with a timed assessment, 

pairwise t-tests showed that math assessments that were untimed (b = 0.07 [0.04, 0.11], t[3] = 

3.88, p = .0001) or a combination of timed and untimed (b = 0.07 [0.03, 0.12], t[3] = 3.49, p = 

.0005) showed significantly higher average weighted correlations between the HME and 

children’s math achievement. The test for residual heterogeneity was also significant (QE[681] = 

4601.93, p < .0001), indicating that even after accounting for whether the math assessment was 

timed, I2 = 85.20% of the variability in effect sizes was left to be explained. 

For the composite math assessment moderator, the results of the overall omnibus test 

showed that whether math achievement was assessed using a composite or a single math 

assessment was a significant source of heterogeneity (F[1, 682] = 12.03, p < .0001, σ2 = .04 [.02, 

.06], k = 684) in the average weighted correlation between the HME and children’s math 

achievement. Both composite (r = .15 [.08, .21], p < .0001, n = 71) and single-measure (r = .13 

[.08, .18], p < .0001, n = 613) math assessments had average weighted correlations that were 

positive and significantly different from zero. Pairwise t-tests, with composite math assessments 

as the reference group, showed that the average weighted correlation between the HME and 

children’s math achievement was statistically the same when math was assessed as a single 

measure (b = -0.02 [-0.06, 0.02], t[1] = -0.89, p = .3747). The test for residual heterogeneity was 

also significant (QE[682] = 4428.74, p < .0001), indicating that even after accounting for whether 

the math assessment was a composite, I2 = 84.60% of the variability in effect sizes was left to be 

explained. 

Finally, for the standardized math assessment moderator, the results of the overall 

omnibus test showed that whether the math assessment was standardized, unstandardized, or a 
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combination of both was a significant source of heterogeneity (F[3, 681] = 9.49, p < .0001, σ2 = 

.03 [.02, .06], k = 684) in the average weighted correlation between the HME and children’s 

math achievement. Standardized assessments (r = .15 [.09, .21], p < .0001, n = 85) and 

unstandardized assessments (r = .12 [.06, .17], p < .0001, n = 585) had average weighted 

correlations that were positive and significantly different from zero, but combined standardized 

and unstandardized assessments (r = .31 [-.05, .67], p = .0931, n = 14) did not. Pairwise t-tests 

with standardized math assessments as the reference group, showed that the average weighted 

correlation between the HME and children’s math achievement were statistically the same for 

unstandardized (b = -0.03 [-0.06, 0.002], t[2] = -1.82, p = .0695) and combined standardized and 

unstandardized math assessments (b = 0.16 [-0.1, 0.53], t[2] = 0.86, p = .3874). The test for 

residual heterogeneity was significant (QE[681] = 4386.81, p < .0001), indicating that even after 

accounting for whether the math assessment was standardized, I2 = 84.48% of the variability in 

effect sizes was left to be explained. 

Moderator Analyses for Study Characteristics 

Moderator results for the study characteristic moderator are presented in Figure 5. The 

results of the overall omnibus test with whether the study captured longitudinal (at different time 

points) or concurrent (at the same time point) relations between the HME and children’s math 

achievement as the moderator showed that it was a significant source of heterogeneity (F[2, 682) 

= 14.50, p < .0001, σ2 = .04 [.02, .06], k = 684) in the average weighted correlation between the 

HME and children’s math achievement. Both longitudinal studies (r = .08 [.02, .15], p = .0131, n 

= 109) and studies that measured the HME and children’s math achievement concurrently (r = 

.15 [.10, .21], p < .0001) had average weighted correlations that were positive and significantly 

different from zero. Pairwise t-tests with longitudinal studies as the reference group showed that 
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effect sizes that captured concurrent relations had average weighted correlations between the 

HME and children’s math achievement that were significantly higher (b = 0.07 [0.02, 0.12], p = 

.0124, n = 575). The test for residual heterogeneity was also significant (QE[682] = 4635.70, p < 

.0001), indicating that even after accounting for whether the math assessment was standardized, 

I2 = 85.29% of the variability in effect sizes was left to be explained. 

Overall, results from all 14 individual omnibus tests, except for the test including the 

HME component moderator, showed significant residual heterogeneity remained after 

accounting for the moderator modeled. This means that variability in the observed effect sizes 

was significantly larger than would be induced by sampling error alone, and that other 

moderators not tested in each moderator model were influencing the magnitude of the correlation 

between the HME and children’s math achievement. Given that each moderator was tested 

individually, it is not surprising that no single moderator (with the exception of the HME 

component moderator) accounted for all significant effect size variance. Thus, as a final step to 

determine the amount of study heterogeneity accounted for by all potential moderators at once, a 

multilevel correlated effects meta-analysis was run with all 14 coded sample, assessment, and 

study features included. Results from the overall omnibus test that included all moderators 

showed that the combined moderators were a significant source of heterogeneity (F[55, 561] = 

4.04, p < .0001, σ2 = .04 [.01, .09] in the average weighted correlation between the HME and 

children’s math achievement. The residual heterogeneity of the model including all moderators 

was also significant (QE(561) = 1358.52, p < .0001, k = 617), with I2 = 58.71% of the variability 

in effect sizes left unexplained, indicating that other moderators not tested in the present analysis 

were likely influencing the magnitude of the correlation between the HME and children’s math 

achievement, beyond the effects of sampling error.  
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Publication Bias 

Funnel plot. First, publication bias was assessed using a funnel plot of effect sizes to 

standard errors, which is depicted in Figure 6. A visual inspection showed multiple studies 

outside of the shaded area, suggesting slight publication bias in the negative direction, indicating 

that more studies with larger p-values are likely missing from the literature on the HME and 

children’s math achievement. The results from Egger’s test, which provides a parametric test for 

the skew of the distribution of effect sizes, confirmed the existence of significant publication bias 

(z = -2.71, p = .0067), with slightly more effect sizes falling below the mean than above it. Given 

that slightly more lower magnitude correlations are reported than are higher magnitude 

correlations (i.e., above the meta-analytic average), our results do not support the existence of a 

file-drawer problem, wherein small effect sizes fail to be published and/or reported. 

P-curve analysis. Results from the continuous p-curve analysis showed that both the full (Z 

= -5.27, p < .0001) and half (Z = -5.02, p < .0001) p-curve tests supported the existence of a 

significant right skew (see Figure 7). These combination test results, which have been shown to 

be more robust to p-hacking than a simple p-curve test (Simonsohn et al., 2014), indicated that 

the set of significant findings had evidential value. Furthermore, full p-curve, and both the half p-

curve and binomial 33% power test were non-significant (full: Z = 2.90, p > .9999; half: Z = 

4.24, p > .9999; binomial: p > .9999), indicating that the p-curve does not support that the 

evidential value is inadequate nor absent. These combined results indicate that the present meta-

analytic sample of studies has evidential value and does not show evidence of p-hacking.  

Sensitivity Analyses 

Trim-and-fill. Trim-and-fill results are presented in Figure 8. The trim-and-fill procedure 

estimated that four studies were missing from above the 99% confidence interval around the 
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average weighted correlation between the HME and children’s math achievement. The empty 

circles represent the filled-in studies (n = 4), and the black circles represent the studies that were 

not trimmed from the analysis (in this case, no studies were trimmed from analysis). A meta-

analysis on these included hypothesized studies resulted in the same estimate of r in comparison 

to the random-effects analysis results that did not utilize multilevel correlated effects modeling (r 

= 0.07 [0.05, 0.09], p < .0001).  

Fail-Safe N. According to the results of the fail-safe N test using the Rosenthal approach, in 

order to achieve null population results (i.e., r = 0), an additional 104,948 studies with null 

results, showing no significant association between the HME and children’s math achievement, 

are needed to achieve the target null p-value of  > .05. To achieve a p > .01, an additional 52,124 

studies with null results (r = 0) are needed. Given that so many studies would have to be added 

in order to support the null hypothesis that no significant association exists between the HME 

and children’s math achievement, the fail-safe N test results provide evidence that our meta-

analytic results are robust and that our study sample has evidential value. 

Robust Variance Estimation. The results of the RVE analyses using robumeta indicated 

that the effect sizes, standard errors, and τ2 values were robust across different values of ρ (r = 

.14, SE = .03, τ2 = .03 for all values of ρ). Although the estimate of the average weighted 

correlation was slightly higher than our meta-analytic results using the metafor package of r = 

.13, the fact that the results are almost the same, with overlapping confidence intervals, indicates 

that our meta-analytic results using metafor are also robust. 
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Figure 9. Effect size estimates for sample characteristic moderators, including grade, country of 
origin, and special population characteristics. 
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Figure 10. Effect size estimates for HME assessment moderators, including HME component 
and HME calculation. 
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Figure 11. Effect size estimates for math assessment moderators, including math assessment, 
math domain, symbolic or non-symbolic, timed or untimed, composite or single assessment 
(Comp.), and standardized or unstandardized (Stand.). 
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Figure 12. Effect size estimates for the study characteristic moderator of whether the study 
reported longitudinal or concurrent effect sizes. 
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Figure 13. Enhanced funnel plot of the multilevel correlated effects meta-analysis results with 
the average weighted correlation of r = .13 and confidence intervals on the 90th (white), 95th 

(gray), and 99th (dark gray) percentiles. 
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Figure 14. P-curve analysis results showing that a significant right skew and non-significant 
results at 33% power for both the full and half p-curve tests, indicating evidential value and a 
lack of p-hacking in our study sample. 
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Figure 15. Trim-and-fill plot of the random effects meta-analysis average weighted correlation 
of r = .07 and confidence intervals on the 90th (white), 95th (gray), and 99th (dark gray) 
percentiles. The trim-and-fill method does not allow for multilevel analyses, so the analysis was 
conducted without accounting for effect size study dependence (r = .07). 
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measurement equipment 

• Ran full 3-hour research protocol 1-3 times per week, which included 
8 cognitive and emotional E-Prime tasks that measured effectiveness 
of cognitive bias modification training, from set up and data collection, 
to clean up and break down 

• Pre-processed psychophysiological data with Neuroscan in real-time to 
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Reading. doi: 10.1080/10888438.2019.1631827.  

 
Daucourt, M., Taylor, J., & Hart, S.A. (2019, in prep). Gene x Socioeconomic Status Interaction 

on Decoding, Reading Comprehension, Writing, and Math, in an Economically-Diverse 
U.S. Twin Sample. 
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(Houston, Texas). November 29, 2018. 

 
Daucourt, M., Haughbrook, R., Taylor, J., & Hart, S.A. (2018). Gene x Socioeconomic Status 
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Project KIDS. Howard D. Baker talk and poster presented at FSU Undergraduate 
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Gains Over a School Year. Poster presented at FSU Undergraduate Research Day 
(Tallahassee, FL). April 10, 2015. 
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• Met weekly for one hour on site with assigned mentee for individual 

instruction in elementary math 



113 

• Taught a new literature-based math lesson every week on a range of 
topics, including multiplication, division, arrays, measurement, and 
many others 

• Answered mentee’s questions through verbal explanation and visual 
demonstration  

• Covered a list of topic-related math vocabulary words every week to 
support the new concepts learned 

• Demonstrated math concepts using props and real-life examples in 
order to apply newly-learned math material 

• Created a rapport as an instructor and friend with mentees, Elijah, 
Mikkel, and Darnelle  
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Big Bend Crisis Hotline, Tallahassee, FL  
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• Completed 20 hours of additional training for certification 
• Supervised newly-trained volunteers on the phones to provide back-

up, feedback and evaluation on their phone room calls for 6-12 hours 
per week 

• Served as a mentor for new volunteers to answer questions and ease 
their transition into the agency 

• Coached volunteers on how to handle difficult calls and follow 
agency procedures even in novel situations 

 
01/2015 - 07/2016 FLORIDA HIV & AIDS HOTLINE  

Big Bend Crisis Hotline, Tallahassee, FL  
Activities: 
• Completed 30 hours of additional training for certification 
• Provided short-term crisis counseling, information and referrals for 

HIV/AIDS, STDs, and other communicable diseases for all of Florida 
6-12 hours per week 

• Connected callers with financial support resources in order to help 
them attain subsidies for medication and other costs incurred due to 
HIV diagnosis 

• Informed callers about the risks associated with STDs, including their 
window periods, treatments, and how to get tested 

• Formed a short-term therapeutic relationship with callers to provide 
them with a forum to express their feelings   

 
08/2014 - 07/2016 HELPLINE 211 & LIFELINE  

Big Bend Crisis Hotline, Tallahassee, FL  
Activities: 
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• Completed a semester-long, 5-10 hours per week training program 
based on Carl Rogers’ RIDE model that required a 90% or higher on a 
written final exam and phone call training for certification 

• Provided short-term crisis counseling, information and referrals for 
8 counties of the Big Bend service area and the United Way for 20-
40 hours per month 

• Established a therapeutic relationship with the caller to build rapport 
and make the caller feel comfortable sharing personal information 

• Identified the callers’ specific needs and feelings within the first two 
minutes of the phone exchange in order to stay focused and help the 
caller come up with solutions 

• Explored alternative solutions in a non-directive manner to increase 
the callers’ resourcefulness and ability to cope with crises 
 

HONORS, SPECIAL AWARDS, & MEMBERSHIPS  
 
HONORS AND AWARDS 
 
2018 Congress of Graduate Students International Presentation Grant ($500) 
2017 Jane M. West Research Fellowship ($500) 
2017 Russell and Eugenia Morcom GRD Excellence Award: Best Poster in Developmental 
2017 Congress of Graduate Students Attendance Grant ($100) 
2016 Mark DeGraff & Lulu Hamilton DeGraff Research Scholarship ($1,500) 
2016 Legacy Fellowship ($10,000 annually for 5 years of Ph.D. program) 
2016 Mark DeGraff & Lulu Hamilton DeGraff Research Scholarship ($1,500) 
2016 Mae Hamptom Watt Presidential Scholarship in Psychology: Excellence in Research 

Award ($1,000) 
2016 Howard D. Baker Undergraduate Research Award, 2nd place ($200) 
2016 Student Council for Undergraduate Research and Creativity Travel Grant ($500) 
 
MEMBERSHIPS 
 
2019 Diverse Psychology Graduate Student Organization 
2017 Psychology Department Representative for Graduate Student Advisory Council 
2016 Society for Research in Child Development 
2016 Association for Psychological Science 
2015 Phi Beta Kappa Honor Society 
2015 Golden Key International Honor Society 
2015 National Alliance of Mental Illness 
2015 Psi Chi Honor Society 
 
CERTIFICATIONS 
 
04/2016 Certification in SAS Programming & Data Analysis 
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WORKSHOPS 
 
04/2017 Attendee, Workshop: “International Workshop on Statistical Genetic Methods for 

Human Complex Traits”. University of Colorado Boulder, Boulder, CO. 
02/2016 Coordinator, Workshop: “Introduction to SPSS”. Florida State University, 

Tallahassee, FL. 
06/2016 Attendee, Workshop: “Quantile Regression”. Florida State University, 

Tallahassee, FL. 
06/2016 Attendee, Workshop: “Getting Acquainted with R”. Florida State University, 

Tallahassee, FL. 
11/2015 Attendee, Workshop: “Behavioral Genetics Boot Camp”. Florida State 

University, Tallahassee, FL. 
 
 
COURSES COMPLETED TO ADVANCE METHODOLOGICAL TRAINING 
 
Spring 2019  Advanced Quantitative Methods 
Fall 2018  Introduction to Structural Equation Modeling 
Fall 2017  Meta-Analysis 
Spring 2016  Regression 
Spring 2016  Hierarchical Linear Modeling 
Fall 2016  Analysis of Variance 
 
 


