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ABSTRACT

Multi-state models are models for a process, which at any time occupies one of several
possible states. An example of a multi-state process is the life history of an individual, where
the states can be different diseases and an absorbing state-death. We applied these methods
to study cardiovascular diseases (CVD) and how they affect mortality. With the increasing
proportion of elderly people in most developed countries, the burden of CVD on the society
is increasing as well. It is estimated that by year 2020 heart disease and stroke will become
leading cause of death and disability world wide. The number of fatalities is projected to
increase to more than 20 million a year, and more than 24 million by year 2030. (Atlas of

Heart Disease and Stroke, WHO, September 2004 )

Prognostic models have been widely used by clinicians to predict the outcomes for patients
free of CVD. These models have been developed mainly using risk functions for the binary
outcome (yes=CVD, no=no CVD) in logistic regression or for modelling the failure time
(time to death) in survival analysis. In both approaches, the focus is to determine the
effect of the covariates (fixed at baseline or time-varying) to mortality. As the population
ages and more people experience different diseases or events, such as heart attack or stroke,
which do irreversible damage to the heart/brain and change the life expectancy. It is also
expected, that factors like high blood pressure or diabetes may have different effects for a
person before and after a stroke. The question that we are interested is how to model the
event history for individuals who go through different disease states in their lifetime. The
goal is to include information for a set of covariates as well as the time and the type of
disease people encounter. We approach this problem from a multi-state prospective, where
the states describe the progression of the disease, for example healthy state, coronary heart

disease (CHD state) cerebral vascular accident (stroke) and death (absorbing state). The

X1



problem can be generally divide into steps:

The first step is to estimate how transition rates between various states depend on the
covariates. This will allow us to compare the role of covariates for different transitions.
The second step is to combine the estimated rates for a given set of covariates into appropriate
transition rates. This will allow us to calculate a survival probability for a given subject.
This can be used as a prognostic function at baseline, as well as at a later time, when

information for the event history of the subject is available.
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CHAPTER 1

Introduction

1.1 Brief history of prognostic models for CVD

Prognostic models for the Cardiovascular Disease (CVD) have been used widely. The focus
has been on modeling time to death or time to the development of the disease. The standard
approach has been to include possibly other diseases as covariates, recorded at baseline
along with some prognostic factors (such as blood pressure, cholesterol). However, with the
advances in medicine and health care in the second half of the 20th century, life expectancy
is continually increasing with a large proportion of the population in their 80’s and 90’s.
Many of the elderly people experience some form of Cardiovascular Disease and often live
with it for a substantial amount of time. These diseases often leave people with irreplaceable
damage to the heart (myocardial infarction) or to the brain (CVA). This phenomena suggests
modeling the life history of the individuals including more states, such as CHD or CVA. First
[ will review the methods that have been used for building prognostic models. 1T will briefly
outline the logistic regression, the Cox proportional hazards model, and some parametric
models, all used in the context of the two state model, i.e. we consider state 0 - when people

are alive and we follow them till failure (state 1) or censoring.

1.1.1 Logistic Regression

In logistic regression, we are interested in modeling the probability that a subject with given
set of covariates will fail within a specified amount of time. We are not interested of the
exact time of failure, only in the outcome at the end of the follow up period.

Suppose we have followed n individuals for a period of time ¢ and recorded their covariates
at the beginning of the study and whether they have failed by the end of the study. The
response variable Y is binary - takes the value 1 if the subject has failed , and 0 if he/she

1



hasn’t failed.

Let us denote

X = (1,241,...,2,) - the covariate vector and

m(X)=PY =1/X) =1-P(Y = 0/X) - the probability of failure by the end of the follow
up.

The logistic regression model has the form:

. 7(X)
logit(n(X)) =1 —— =X 1.1
where B = (8o, b1, . .., 8p) are the regression coefficients that require estimation.

The interpretation for the coefficients is given in terms of the odds ratio. Let us assume
diabetes is one of the variables recorded at the beginning of the study, with the value 1
for those with diabetes and 0 otherwise. Then the odds ratio for two imaginary subjects,
one with diabetes and the other without ( having all the other covariates the same ) is
exP(Baiap). The interpretation of the regression coefficient 3; for a continuous variable X is
similar, comparing the odds ratio for a unit increase in Xj.

The regression coefficients are estimated to maximize the likelihood. Since the observa-

tions are assumed to be independent, the likelihood function is the product:

n

1(B) = [[ (X" (1 = m(X:)' ™ (1.2)

i=1

It is easier to maximize the log likelihood function

L(B) = log(l(B)) = ZYilog(W(Xi)) + (1 =Yi)log(1 — m(X3)) (1.3)

To find the vector 3 that maximizes L(3), the first derivatives with respect to ;i =1,...,p

are set to zero, obtaining the so called likelihood or score equations:
> Xy(Yi—w(X) =0 (1.4)
i=1

which is a vector equation with (p + 1) elements. Using the fact that the first coordinate in

every vector Xj; is one, we obtain the equality

ZYQ = ZW(Xz') (1.5)

2



which indicates that the number of people expected to fail is the same as the number of people
observed to fail. There is no closed form for the coefficients maximizing the likelihood and
numerical methods such as Newton-Raphson can be used.

Logistic regression has been widely used in prognostic models [1], [2]. However, this approach
has the limitations that all subjects are observed over the same period of time and it estimates

the survival function only at one specified time.

1.1.2 Cox Proportional Hazards Model

The Cox model [3] assumes the hazard rate as follows:
a(t|X) = ao(t)erp(XB) (1.6)

where (3 is a vector of coefficients to be estimated and X is a vector with covariates. If we

compare the hazards ratio for subjects ¢ and j with covariates vectors X; and X, we have:

i — ol (X = X))
which does not depend on time. Because of this, the Cox model is often called the
proportional hazards model.
If the covariate vectors X; and X differ in only one variable, say subject i is 55 year old and
subject j is 54 then the hazard ratio is exp(f,4.). The exponentiated individual coefficients
can be interpreted as the hazards ratio for a unit increase in the corresponding covariate.
The baseline hazard ag(t) only depends on time ¢ and can vary freely -hence the Cox model
is semi-parametric. The strength of the Cox model is the ability to estimate the coefficients
B without specifying the baseline hazard «q(t). This is achieved by maximizing the partial
likelihood, which has contributions for each death time.
Let tq,1s,...tp denote the ordered event times. Let us assume there are no tied death times

and the censoring is independent of the failure times. Let X ;) be the covariate vector for

the subject failing at time ¢;. The partial likelihood is defined:

D
B exp(X (5 3)
L) = H ZjeR(ti) eXp(XjB)

where R(t;) is the risk set at time ¢; -the set of all individuals who are still under observation

at a time just prior to t;. The partial likelihood depends only on the order of the failure
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times, not on the exact times.

Wilson et. al. [1] used the Cox proportional hazards model for the probability of developing
CHD using data from the Framingham Study. The covariates included in the model are age,
systolic blood pressure, cigarette use, diabetes, total cholesterol (or LDL cholesterol) and
HDL cholesterol. The continuous covariates are split into intervals and a model with only
categorical variable is considered. The discriminatory ability of the model is compared to
proportional hazards model and accelerated failure model with continuous covariates using
the ROC curve and the corresponding c¢ statistics. The performance of these models is very

similar.

1.1.3 Parametric models

In general, parametric models are written in two different ways:

e proportional hazards models- specifying the hazard rate

e accelerated failure-time (AFT) models - specifying directly the failure time 7.

1.1.4 Accelerated Failure Time models

In this approach, the failure time 7" is modeled directly:
In(T;) = X;38 + In(;)

where 7; = exp(—X3)7T; is a random variable with a distribution assumed to be known.
The quantity exp(—X;3) is called the acceleration parameter. The role for the acceleration
parameter can be viewed through the survival function.

Let us denote Sy(t) the survival function of a subject with a covariate vector X = 0. Then

we have

S(tX) = So(exp(—=X;8)t)

In other words, the probability of survival after time ¢ for a subject with covariates X
is equivalent to the probability of survival past time exp(—X,;3)t for a subject with all
covariate values equal to zero. Therefore, the interpretation of the acceleration parameter is

the following:



o if exp(—X;3) = 1, then time passes at its normal rate
o if exp(—X;3) > 1, then time is accelerated and failure is expected to occur sooner
o if exp(—X;3) < 1, then time passes more slowly and failure is expected to occur later.

Generally, the two approaches described above are different ways to model the dependence on
the covariates for the survival function. However, if the Weibull distribution is assumed for
the random variable 7; = exp(—X3)1}, then it can be shown [5] that the regression variables
act multiplicatively on the hazard function. Therefore, using the Weibull distribution, both
approaches lead to the same model and this is the only distribution with this property.
Anderson [0], [7] generalizes the AFT models using the Weibull distribution. To illustrate
his approach we need to point out two observations. First is an alternative definition for the
2 parameter Weibull distribution:
A random variable T" has Weibull distribution with a location parameter p and scale

parameter o if.
_ log(T) —
o

U (1.7)

has an extreme value distribution with cdf Fyy(u) = 1 — exp(— exp(u)).

The standard definition of the Weibull distribution [5] has hazard function :

aft) = Ay(At)o—

The two definitions specify the same distribution with the correspondence:

v =1 and X = exp(—p).

The advantage of the definition through the parameters p and o is that the standard AFT
model, with Weibull distribution as a baseline hazard, is equivalent to modeling the location
parameter p as a function of the covariates:

w(X) = XpB and o considered a constant.

The second observation, is that the property of the proportional hazards model 1.1.2, can
be expressed using the logarithm of the cumulative hazard function, defined at the beginning
of Chapter 2:

log(A(t]X2)) — log(A(t| X)) = B/(Xi — X;)

in other words, the difference of the log cumulative hazards is constant with time.



In the AFT Weibull model, 4 = u(X) and the logarithm of the cumulative baseline
hazard is A(t|u,0):

log(A(t|p, o)) = log(—log(Pr{T >t})) = W

where the first equality is a general formula (which will be outlined in Chapter 2) and the
second equality uses the definition of the Weibull distribution 1.7. If o is treated constant, as
in the general AFT Weibull model, the difference of the log cumulative hazards for subjects
¢ and j with covariates X; and Xj; is a constant:

w(X;) — p(X;)

log(A(t| X)) — log(A(t[ X5)) =

and it is a proportional hazards model.
Anderson suggests using models, where ¢ is also a function of the covariates. He compares

the following models, assuming underlying Weibull distributions as in (1.7) :

e Model 1: u= Xg, log(c) = by

e Model 2: = Xg, log(c) =60y + 01

o Model 3a: 1= X8 , log(cr) = 0 + 011+ Oops?
e Model 3b: p=Xg, log(o) = X~

Model 1 is the standard AFT Weibull model. Model 2 is the final model, where different
models are compared using the Likelihood Ratio Test. The parameter #; indicates how
fast the logarithm of the cumulative hazard converges or diverges for two values of . The
covariates used in the models are measured at baseline: logarithm of age, logarithm of
systolic blood pressure, logarithm of cholesterol, Metropolitan relative weight (Metropolitan
Life Insurance Company Tables) and an indicator for smoking. The use of logarithms resulted
in improved fit. The final model was used to predict the probability of developing CHD for

a given set of covariates.

1.1.5 Parametric Proportional Hazards models

In the models in this category, the hazard is specified as in the Cox model,
At X;5) = o(t) exp(X;8)
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where X are the covariate vector for subject j, and B3 is the vector for the regression
coefficients. The difference from the Cox model is that parametric assumptions are made
about the baseline hazard function. Conroy et al. [8] used risk functions based on a Weibull
proportional hazards model, stratified on cohort and gender. The SCORE (Systematic
Coronary Risk Evaluation) project uses data from 12 European cohort studies and the goal
is to measure the risk of fatal cardiovascular disease. The approach of measuring the risk of
fatal CVD disease is in contrast to most other studies, where the end point is fatal or non-
fatal CVD disease. The estimation of the risk function is split into two parts-the risk of fatal
CHD disease and the risk of fatal non -CHD CVD disease. One reason for this distinction
is the well observed regional differences in Europe- countries with high CVD risk, such as
Denmark, Finland and Norway and low CVD risk regions - Belgium, Italy and Spain. In
the countries with low total CVD mortality, the proportion of the CHD deaths to the total
CVD deaths is also low. The model uses strata for cohorts and gender, allowing the baseline
hazards to vary, but keeping the coefficients for the risk factors the same. In other words,
the model assumes that the effect of the covariates is the same for all individuals. Another
notable difference from other studies is the use of age as a time scale. This idea was first
used by Korn et al. [9], where they have a discussion for the use of age as a time scale for
certain (e.g. chronic) diseases. The covariates considered in the SCORE study are smoking
status, systolic blood pressure and cholesterol (or cholesterol to HDL ratio). Information for
diabetes was not available for all the cohorts and was omitted. Two models were considered,
one using total cholesterol, the other the ratio of total cholesterol and HDL with very similar
results. The risk estimations are displayed graphically in risk charts for the use by clinicians.

Non-parametric and semiparametric methods compare subjects at the time subjects fail.
Parametric models on the other hand, calculate probabilities for every interval, for every
subject. The likelihood function, in both of the parametric models is the product of the
individual contributions for each subject, for the time they were under observation. If subject
J was followed in the interval (o; ¢;], his contribution to the likelihood is :
L,(6) = St X5,0) 4 f (151X, 0)%

S(to;| X5, 0)

where d; is an indicator for censoring (d; = 0 if censored, d; = 1 if failure), © is the vector
of parameters used in the model and f(¢|X, ©) is the density function of the failure time 7.
Multi-state models describe the life history of individuals and are helpful in studying the

7



occurrence of diseases changing the risk of death. They can be used for modeling recurring
events, although in this dissertation we focus on the first occurrence of diseases. Most
of the studies for CVD developed risk functions based on end points of fatal and non-
fatal CVD. There are a number of problems using non-fatal end points, one of which is
that CVD is a combination of different diagnosis with different severity, as indicated in
[8]. However, using CVD with fatal end points only, will inevitably include the burden of
the non-fatal CVD events occurring earlier. Peeters [10] estimated using Multi-state life
tables that at age 50 men have 6.3 (5.7 for women) years spent with CVD. We believe, a
more complete picture would be to model the disease as a factor to mortality, adjusting for
covariates. Modeling CVD diseases as states, we believe models a natural process of aging.
De Becker et al [11], listed 5 observations on which the prevention of CVD is based in the
SCORE project. The second observation indicates that “the underlying pathology is usually
artherosclerosis, which develops insidiously over many years”. Multi-state models can also
be used for making estimates of individual prognosis in epidemiological or clinical studies,

combining the estimated prognosis for developing a disease and the mortality afterwords.



CHAPTER 2

Background

2.1 Background on Survival Analysis

Survival analysis is an area which focuses on the distribution of a failure time 7. The
probability distribution of 7' can be specified in different ways: with the probability density
function (pdf), the survival function or the hazard function. Each one determines the rest.
The survival function is defined as the probability that T" exceeds a value t in its range:
S(t) = P(T > t). The distribution of the the time to failure 7" can be discrete, continuous
and mixed, and we will briefly outline each of these cases.
If T is a discrete random variable taking values t; < t,... with associated probability
function

the hazard at t; is defined as the conditional probability of failure at t; given that the

individual has survived to ¢;:

and the cumulative hazard is defined as
Al =)
t;<t
The relation between the survival function and the hazard function is given with the formula
sit) =110 -a)
tj<t
If T is a continuous random variable, the probability density function of ¢ is defined as

f(t) = —dS(t)/dt and the intensity (hazard) function is defined as

at) = AlitrBO(At)_lP(t <T<t+AtT >1t) (2.1)



It is the instantaneous rate at which failures occur for individuals that are surviving at time

t. We have the following relation
t
S(t) = exp {—/ a(s)ds} = exp[—A(t)] (2.2)
0

where A(t) = f(f a(s)ds is called the cumulative hazard function.

We will derive another formula for P[T" € [t,t+dt) | T > t] and compare with the one above:
PT e t,t+dt)|T >t]={S(t—)— S(t+dt)}/S(t—)
which in the case of continuous failure time 7', using (2.2), can be written as
1 —exp{—(A(t +dt) — A(t))} = dA(t)

The last approximation is based on Taylor’s formula expansion 1 —e™* & z, for small values
of x. More generally, the distribution of 7" may have both discrete and continuous parts.

The cumulative hazard function is then:

At) = Zozj +/ a.(s)ds

t
ti<t 0
We can specify the hazard of failure over the infinitesimal interval [t,¢ + dt] as
dA(t) = A(t+dt) — A(t—)

= P[Te[t,t+dt)|T >

. (673 t:tZ,Z:1,27
a ae(t)dt otherwise

The survival function is given with the formula:

S(t) = exp {— /Ot ozc(u)du} [T -a)

t;<t

There is a general formula for the survivor function that holds for discrete, continuous, or

mixed cases

S(t) = (1 — dA(s))

where the product integral on the right hand side will be defined later in section 2.4.2.

10



2.2 Specifying the failure time distribution

2.2.1 Kaplan-Meier formula

In the case of a homogeneous population (when no covariates are considered), we have
different ways to specify the distribution. A non-parametric estimate for the survival function

is given by the Kaplan-Meier formula:

sy = T =%
(t) jgt "
where ¢ <ty < ... <1 represent the observed failure times, n; is the number of people at
risk and d; is the number of deaths at time ¢;. Later we will outline some parametric and
non-parametric methods for a homogeneous population in the context of multi-state models.
We have already discussed methods for specifying the distribution of a falure time adjusting
for covariates. The Cox proportional hazards model and the accelerated failure time model
were discussed in Chapter 1 and present a semiparametric and a parametric approach for

modeling survival data. Here, we will add another (non-parametric) method.

2.2.2 Aalen Additive hazard model

This model originates from the work of Aalen [12] and is an alternative to the semiparametric

multiplicative hazard model. We have, in the case of the two-state mortality model,

alt, X) = Bolt) + BB X1 (1) + ... + Bu(t) Xi(t),

where X (t) = [X1(t),..., Xk(t)] is a vector of possibly time dependent covariates. Use of
this model for multi-state problems is presented in Aalen [13] and will be discussed later.
The two main differences from the multiplicative hazards model are:

- the hazard of a failure time is modeled as a linear combination of the covariates

- a non-parametric approach is adopted, i.e. the coefficients 3;(t), i = 1,..., k are allowed
to vary freely ( they are assumed constants in the proportional hazards Cox model).

As outlined by McKeague and Sasieni [14] the additive form can be interpreted loosely
in terms of unobserved competing risks, since the hazard function for the minimum of

independent random variables is the sum of the hazards for the individual variables.
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2.3 Stochastic models

Multi-state processes decribe the life history of individuals. At any time the process occupies
one state. We can view the classical survival analysis as a process with two states, alive (state
0) and dead (state 1). We will refer to this model as the mortality model. Next, we will

illustrate the competing risk model.

The competing risk model

dead
of heart
disease

dead
of cancer

Y

Alive

Dead
of other
causes

Figure 2.1: Competing Risk Model

Figure 2.1 presents the competing risk model. In this model, subjects are alive in state 0
and the other states are different causes of death. These models have been widely used and
there is an extensive literature on them (for a review: Crowder [15]).

Denote k the number of competing causes of death. We have k possible transitions, each
with a specific hazard rate ag;(t), j = 1,...,k. Denote Pp;(s,t) the probability that the

process is in state 0 at time s and in state 7 at time ¢, j = 0,1,..., k. The hazard rates are
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defined as:
;i (t) = Ahtmo(At)—lpoj (t, t + At)

There are two types of transition probabilities, the survival function:

Po(0, t) = S(t) = P(T > t) = exp (— /0 t > ah(u)d(u)>

h=1

and the cause specific cumulative incidence functions:

Pon(0, t) = /Ot Su)ap(u)d(u), h=1,... k

Next, we will introduce the notation for a general multi-state model.

2.3.1 General notations and definitions

A multi-state process is a stochastic process (X(t), t € Q) with a finite state space S =
1,...,p and with right continuous piecewise constant sample paths, with limits to the left.
Usually the set = [0, 7] or [0, 7). Informally, information up to time ¢ consists of all
the states the process has visited and the times of the transitions (events). This is made
mathematically precise as a ¢ - algebra, F}, called also history at time ¢, consisting of the
development of the process in the interval [0, t]. As the time increases, F} is an increasing
sequence of ¢ - algebras, a so called filtration. The transition probabilities are defined as:
Pyi(s, t) = P(X(t) =j|X(s) =h,Fs_) for h, j€ S, s,t€Q, s<t

Usually, the multi-state model is defined using its transition (hazard) rates defined as:
an;(t) = AlitrilO(At)_lP(X(t + At) = jIX(t) = h, F_)

If avj(t) only depends on the history via the state h = X(t), the process is called a Markov
process. The process is memoryless, in the sense that only the current state is relevant in
specifying the transition rates. The rates themselves are allowed to depend on the time ¢
since the beginning of the study. The Markov property is often expressed in the following
form: the past and the future of the process are conditionally independent, given the present.
In some situations however, there may be dependence on the time since entry to a state. In
these cases, we can allow the hazard rate to depend on the time d spent in the current state:

= Alitmo(At)_IP(X(t + At) = j| X (t) = h, state hentered at timet — d)

ozhj (t, d)

13



This model is called the extended Markov model, or the modulated Markov model.

If the current state and the time spent in it determine the hazard rate, we have a semi-
Markov process, and can write, ay;(t, d) = auj(d). Another way to express this property is:
conditional on the sequence of states, the transition times are independent.

A state h € S is called absorbing if for all t € €,j € S,j # h,ay;(t) = 0; otherwise h is
transient. In our applications there is one absorbing state - death, and subjects are followed
until they reach this state, or they are censored in any other state. Next we will describe

the illness-death model, where we can consider different types of dependence.

2.3.2 Counting Processes, Likelihood calculations

In this section we will introduce the counting process formulation for time to failure analysis.
This approach was introduced in the 1970’s by Aalen and has been widely used since then.
Assume that the process X;(t) is observed over the interval [0, 7;], where 7; is fixed. Random
right censoring and left truncation are considered later. All the information about the process

can be derived from the initial state X, and the functions
Nj,(t) = (# direct transitions h — jin [0, ] for subject i),

where h,j € S. These functions are right continuous and piecewise constant, with jumps at
the times of transitions from state h to state j.

For the process 4, we will observe Nj;(7;) such transitions:
4 iNi
0<T,§j<-~<Thj T <1,

Denote
Naj(t) =D Nj(t) and Yi(t) = I{X;(t—) = h}

Note that Y} () is an indicator for subject i being in state h, just prior to time ¢.
The notation X;(t—) refers to the limit from the left. We have assumed X(¢) to be right
continuous, with limits from the left. Summing over all individuals, we have (assuming state

h is not an absorbing state)

Yiu(t) = ZY,Z(t) ( # of individuals ‘at risk’ in state h in time t— )
i=1

14



Note that for t > 7;, Ny;(t) = Np;(7) and Y3 (t) = 0, so these functions can be considered
defined on (0, co). The likelihood for the observed process is:

hj Tl)

HHexp( / a;j(t)y,j(t)dt) H aj (T, (2.3)

1=1 h#j

This likelihood is somewhat different than the one usually seen in Survival analysis books.
If the ith subject is censored in state h, and this is his first visit to the state, then Nj; is
zero for all states j # h, and the last term in (2.3) would be missing. In the models we will
consider, there will be at most one possible transition h — j, in fact there can be only one
visit to every state (e.g. illness-death model).

The derivation above was obtained for observation of subject ¢ up to time 7;, which is assumed
fixed. This is the case with the data set we have - The Framingham Heart Study. In general,
the formulas can be extended to two cases of incomplete observation: delayed entry-where
individual ¢ enters at some time V;; and right censoring, where subject ¢ is lost for follow up
at time U;. Both V; and U; may be random, but can depend either on the previous history of
the process or independent of it. The only correction in the above formulas is the definition

of the “at risk” indicator, now: Yj(t) = I{X;(t—) =h, V; <t < U;}
2.4 Two examples

Next, we will outline two examples of multi-state models: one is a parametric, the other is

non-parametric.

2.4.1 Parametric Hazard rates: constant and piecewise constant

In this model we will assume the hazard for going from state h to state j is constant and the
same for all subjects - oj,;(t) = an;. Let Ny;(T) = Npj, where T = max(ry, ..., 7,). Then
the likelihood has the form:

H H ah Texp (—an;Shy)

h h#j

S, = Z/T Yii(t)dt

where we assume 0° = 1 and
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The maximum likelihood estimates of «y; are:

. hj o :
Qpj = S—J, which is the classical occurrence/exposure rate.

h
An easy generalization is to allow piecewise constant hazard rates: we assume the hazards

aj,;(t) are constant over the interval (f,_q, t;]. Similarly the maximum likelihood estimates
O]

N,
are: dg]). = S—(hl]) where N,Slj) = Np;(t)) — Np;(ti—1) and

t; )
S, = Z/tl Vi (t)dt

Asymptotic inference can be obtained from the observed information:

N
~D?*logL = i

from which we can obtain ()12 ()
(ap;)? Ny

n ]
T

Var(o?gl}) ~

2.4.2 Freely varying (non-parametric) hazard rates

Assume that the transition rates are the same for all subjects, but vary freely with time
ap,;(t) = ap;(t). We assume the individuals come from a homogeneous population and there
are no covariates. Instead of estimating the hazard rates, we can estimate the cumulative
hazard:

Ani(t) = /O t aun; (w)du

using the Nelson-Aalen estimator.

Ans(t) = /O }{ZEZ ANy () =Y 3 le (2.4)

ok 0<T’k<t

where Jy(u) = I {Y,(u) > 0}, with variance estimators:

o’ (Ahj(t» :/0 }{:(%;szhﬂ Z Z le

ik 0<T““<t

The asymptotic properties of these estimators are derived using techniques based on

stochastic integrals and martingales. The matrix of the transition probabilities P(s, t) =
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(Prj(s, t)) can be calculated as a product integral, which is explained in the next section.
Formula ( 2.6 ) can be used to obtain an estimator for P(s, t) by plugging the matrix of the

Nelson-Aalen estimators (Ay;(t)) into the formula

P(s, t) = [[(I + A(du)) (2.5)

s

This estimator is known as the Aalen-Johansen estimator [16], and for the case of the two-
state mortality model , Py(0,t) reduces to the Kaplan-Meier estimator, since Ag(t) is a

scalar step function

An(t) = ~Ann(t) = =3 D

ti<t J

S@ZHQ_%)

i<t J

and

where r; is the number of people at risk just before time ¢;, and d; denotes the number of

observed failures at ¢;.

The product integral

Multi-state models are usually defined through their intensity functions. Often, the interest
is in estimating transition probabilities The matrix of the transition probabilities P(s, t) =
(Pr;(s, t)) and can be obtained using a (matrix) product integral. Let I be an identity
matrix (pxp) and G be a matrix valued function. The product integral is defined as:

MY+ G(ds)) =  lim (I +G(t) - Gt,_y))

max [ty —t,—1]—0
where 0 =ty < t; < ... t, =t is a partition of [0, ]
In the case of G - scalar and a continuous function, we have:

t
[+ Gds)) = =60

0

If G is a scalar step function with jumps dy, ..., dk in the interval [0, t], we have
t K
[+ Gds)) =[]+ dw)
0 k=1
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Define aps(t) = —>_,.;ani(t) and the intensity matrix A(f) = (Ap;(t)), where
Api(t) = fot ap;(u)du. The matrix of the transition probabilities P(s, t) = (DPy;(s, t)) is

given by
t

P(s, t) = [[(I + A(du)) (2.6)

s

As an illustration of this formula, consider the case of the exponential distribution for the
mortality model, where state 0 is alive, and state 1 is dead. The hazard ag; = A, agg = —A
and the other two intensities (aig, aq1) are zero. Thus, Ag(t) = —At and Pyo(0, t) =
[To(1 + Aoo(du)) = exp(An(t)) = exp(—At), since Ag(t) is a continuous scalar function.
Note that a shorter way to calculate Py is Pyo(0,t) = S(t) = P(T > t) = e for the

exponential function.

2.5 Parametric models - Flowgraph model

I will consider the flowgraph model as an illustration for the parametric approach to multi-

state models.

2.5.1 Introduction

The main features of the Flowgraph models are:

- parametric assumptions for the waiting time in each state.

- primarily used for data analysis of semi-Markov processes.

- they model the total time to failure, however the hazard can be estimated as well

The flowgraph model, in the form used in the literature, does not involve covariates. On the
other hand, it does not assume the proportionality of the hazards as in the Cox model and
can be used for multi-state models with very complicated state structures. Flowgraph models
have been used for modeling survival data for cancer patients and in reliability. They require
the use of a symbolic algebra package, such as Maple, because of the use of approximation
techniques (saddlepoint approximation) which are very tedious. We will illustrate the use of
flowgraph models for the illness-death model for a fairly homogeneous population- males 50
to 62 years old at baseline of the Framingham Heart Study. As described above, state 0 is
healthy state, state 1 is CHD, and state 2 is death.
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2.5.2 Censored histograms

Censored histograms are used as a rough guide for choosing a parametric model for a given
transition.
Let Y;; denote the waiting time for the transition from state i to state j. We assume the Y},
are independent of each other. This corresponds to a Semi-Markov process. Recall that for
Semi-Markov processes, conditional on the sequence of states, the individual waiting times
are independent. The Flowgraph method assumes parametric distributions for each waiting
time. The choice of the distributions is made using so called censored histograms, which are
defined below.
Focusing on each waiting time separately, we can estimate P(Y;; > t) using a Kaplan - Meier
estimator. If we are interested in the waiting time Y{;, we consider failure as CHD and death
before reaching CHD as censoring.
We have

P(; < Yor <j41) = S(;) = S(tj41) ~ S() — S(Fj41)
where S (t;) is the Kaplan - Meier estimator for the transition 0 — 1.

To construct a censored data histogram, create a set of K equal-width intervals (fj,fjﬂ],

j=1,..., K and over each of them plot a bar with the estimated probability

ti+1 . .

. for(z)dx ~ S(t;) — S(tj+1)

i
where fo;(z) is the density function for the waiting time Yg;
The Framingham Heart Study will be introduced in Chapter 3. In this particular data set,
we have the death times recorded at every exam, i.e. if a subject dies between exam 5 and 6,
his failure time is recorded as 6. As an example I will use the oldest 25% in the male group,
that is men older than 49 at baseline. We will use them since they are a more homogeneous
group. There are 682 men in this age group and after removing the subjects with CHD
recorded at baseline, we are left with 669 men. The censored histogram for this group are
presented below.

Based on the censored histograms, we can assume Gamma densities for the transitions

0 — 1 and 0 — 2, figures 2.2 and 2.3. For the transition 1 — 2, we will assume Exponential

density, figure 2.4.
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Cencored Histogram 0--=1, men agegrp4
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Figure 2.2: Censored histogram, transition from healthy to CHD

Cencored Histogram 0-->2,men agegrp4
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Figure 2.3: Censored histogram, transition from healthy to death

2.5.3 Density function for the total waiting time

Denote Y the total waiting time until reaching state 2. It is Y = Yy + Yi2 in the case a
subject visits state 1 first, and Y = Yj, for subjects going directly to state 2. The essence of
the flowgraph approach is to estimate the density function for the total waiting time Y. It
has two steps, first to obtain the moment generating function (MGF) for Y and second to

estimate the density of Y, corresponding to the calculated MGF in step 1. I will outline the

20



Cencored Histogram 1-->2, men agegrp4
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Figure 2.4: Censored histogram, transition from CHD to death

two steps separately.

Calculating the MGF of the total waiting time

The moment generating function (MGF) for a random variable X is defined as
My (s) = E(eap(sX))

provided the expectation exists for s in an open neighborhood of 0.

Let X and Y be two independent random variables and Z = X 4+ Y be their sum. Then, we
have Mz(s) = Mx(s)My(s), the MGF of Z is the product of the MGF of X and Y.

There is a general procedure to obtain the MGF for the total waiting time for any flowgraph.
This procedure is based on Mason’s rule [17], which was originally developed in the context
of graph theory for solving systems of linear equations. For our example in the 3-state illness-
death model, we don’t need the general rule. Recall the waiting times Y;; are assumed to be
independent and pp; = 1 — pos = P(Yo1 < Yo2). The total waiting time is Y = Yy + Yio with
probability pg; and Y = Yys with probability pgo = 1 — po1. Therefore we have

My (s) = po1Moi(s) Mi2(s) 4+ poaMoa(s)

where M;;(s) is the MGF for the waiting time Y;;.
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Inverting the MGF of the total waiting time

The flowgraph model gives us the MGF of the waiting time distribution of interest. Our
interest is in computing the Bayes predictive density of the total waiting time and this
requires converting the MGF to a density function. In special cases, such as convolutions of
exponentials, we might be able to find the density of Y by recognizing the MGF, or by using
an inverse Laplace transform. In practice, the general approach is to do it numerically using
saddlepoint approximation.

Theorem [Saddlepoint Approximation]

Let K(s) = log[M(s)] be the cumulant generating function (CGF). Let ¢; and ¢y be constants
such that ¢; < 0 < ¢o. Suppose M (s) exists for s € (c1, ¢2), an open neighborhood of zero.

Then the saddlepoint approximation for the density of T' is
fr(t) = 2aK"(3)] "Pexp[K(8) — 4], (2.7)

where K"(s) = d?K(s)/ds* and the value of § is estimated from the so called saddlepoint
equation

K'(5) =t (2.8)
There are three main derivations of the saddlepoint theorem, the original is due to Daniels
[18], a simpler derivation is due to Barnoff-Nielsen and Cox [19] and the third is due to
Barnoff-Nielsen [20]. For most problems involving flowgraphs, § is a complicated implicit
function of both ¢ and the parameters of the distribution. This is overcome by the use of a
symbolic algebra package, e.g. Maple. The constants ¢; and ¢, are found numerically, e.g.
the upper bound is the smallest positive root of the saddlepoint equation (2.8). Next, I will

illustrate the theorem with an example for a Gamma random variable.

Saddlepoint approximation for Gamma random variable

A Gamma random variable 7' ~ Gamma(a, 3) with mean «/3 has MGF

g
M [ a— «
(s) (5_a) , s<f8
The cumulant generating function (CGF) was defined as K (s) = log[M(s)].
In our case, we have K(s) = a[log(8) —log(f —s)] for s < [ and

K'(s) = 5 — (2.9)
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K"(s) = 2.10
O e (2.10)

The saddlepoint equation (2.8) becomes

a
=1 2.11
- (2.11)
and is solved by

§=p8- % (2.12)

which gives us K" (s) = g and K (5) = alog(B) — log($).
Evaluating the quantities in (2.8) and (2.7), we have

—0.5
fr(t) = (%) exp {alog (%) —t0 + a} , fort>0 (2.13)

We can rewrite (2.13) to give

fr(t) = (\/I_(Z? (1/2)) B> Lexp (—Bt), fort>0 (2.14)

which is the density function of a Gamma variable up to a constant. The constant is Stirling’s

approximation to the Gamma function
(o) = V2ma® /2

In practice, the saddlepoint density is normalized to integrate to 1. The normalizing constant

is fo fT t)dt and is calculated numerically.

2.5.4 Likelihood calculations

Recall that in the classical survival analysis we have two states, 0 and 1, and we are interested
in the waiting time 7" for the transition 0 — 1. Let fr(t|0) and Fr(t|f) be the density and
the cumulative distribution function (CDF) of T and 6 be a vector of parameters. Suppose
n subjects are followed and n; failures are observed and ns censoring times, n = n; + ns.
Denote the failure times x4, ..., z,, and the censoring times 7, ...,z . Then the likelihood
is

L(f|data) = Hf x;|0) H F(x;‘|9))

We will illustrate the likelihood calculations for the illness-death model, and will use data

for the oldest male group, age group 4. To derive the likelihood function for this model, let
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fons Fyn be the density and CDF of the waiting time in state g until transition to state h.
Based on the censored histograms, we made the following parametric assumptions:

0 — 1, Gamma(ay, 1), mean oy /(3

0 — 2, Gamma(as, 53), mean as /s

1 — 2, Exponential(y), mean 1/

The corresponding densities are:

1

for(tlas, 61) = mﬁf‘ztm_lemp(—ﬁlt), t>0
foalt]ia, Bo) = @ﬁg%aﬂwm—m £>0

fra(tly) = yexp(—t), t >0
Let x;g, be the ith uncensored transition from state g to state h, and let T, be the jth
censored observation in state g. For example, suppose subject ¢ moves to state 1 at exam 5,
and to state 2 at exam 15. Then the subject ¢ contributes data x;p; = 5 and z;15 = 10.
We have 669 men in age group 4. State 1 (CHD) was visited by 308 men, out of them 300
reached state 2 and 8 were censored in state 1. There were 341 direct transitions to state 2,
and 20 men were censored in state 0. The likelihood contribution from the observations in

state 1 is
300

8
Li(a1, 5:1|D) = Hf12($i12|041, A1) H(l — F(a}y5]on, 51))
i=1 j=1

where D denotes the observed data. The contribution from the uncensored observations in

state O 1s
308 341

L(o,uncen)(Oéb P, az, 52,2901\2)) = Hp01f01 (962'01’061, 51) HP02f02($io1|Oé2, 52)
i=1 i=1

and pg; = 1 — pge is the probability of moving to state 1, before moving to state 2. The

contribution from the censored observations in state 0 is
20

L(o,cen)(Oéhﬁl, 04276271701’7)) = H {1 - [p01F01(33;70) +p02F02($;o)]}

J=1

Finally, the total likelihood is the product
L(ala 617 Qo, 527 7, Po1 ’D) = LlL(O,uncen)L(O,cen)
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A symbolic algebra package, such as Maple can do the calculations.

2.5.5 Bayesian predictive density

In this section we will describe how to obtain the Bayesian predictive density, survival and
hazard functions for the total waiting time in a flowgraph model. Bayesian analysis formally
incorporates subjective information about a problem into the analysis via the priors for the
parameters. When there is a lack of prior information, one can use non-informative priors.
These priors are also called vague or flat priors. With flowgraphs usually independent, non-
informative priors are assumed.

The Bayes predictive density of a future failure time 7" is

fr(t|D) = [ fr(t,0|D)do

[ fr(t|6D)x(0|D)d6o (2.15)
= [ fr(t0)7(6]D)df
= Eyp [fr(t]0)]
where 7(0|D) is the posterior distribution of 8 as defined below.
Definition:[Bayes Theorem)|
The posterior distribution of 6, given the data D is defined by
m(0|D) o< L(8|D)m(0) (2.16)

where 7(f) is the prior for 6 and L(0|D) is the likelihood function. We can numerically
integrate (2.15) for a given t using Monte Carlo sampling. This involves generating a sample

01, ...0, from the posterior 7(0|D) and calculating

. ™ fo(t)o;
fr(t|D) = L= J1(%) (2.17)
m
where , fT(t|6’) is the estimated density from the saddlepoint approximation.
A similar method has been presented in Welton and Ades [21]. They proposed a model,

where the transitions ¢ — j are assumed with constant intensities «;, and a Bayesian
approach is used to find the posterior densities for these rates. They consider the situation
with fully observed data (we know all transitions and the time they occurred) as well as
a situation where some transitions may have not been observed. However, as they pointed

out, the assumption of constant hazard rates is unrealistic and some variations are discussed.
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2.6 Life Table calculations

The classical life table is designed to deal with two states - alive and death. The time is
age for the individuals, and the time span is divided into age periods. For each age interval
the number of people who die, withdraw or enter the study is recorded. The literature on
life tables is vast and different versions of tables have been developed. Chiang ([22]) has
an extensive treatment of life tables. The quantities in which we are interested are the
proportion of the survivors at age = and the life expectancy (also denoted LE) at age x. The
construction of a life table will be outlined briefly, following Chiang ([22]). For simplicity,
we will illustrate the case for a life table without entries and withdrawal during the follow
up.

For each age interval [z, + 1) the following quantities are recorded:

[, - number of alive at age =z,

L1 =1 —dy

d, - number of people dying in the interval [z, z + 1).

. - proportion of people dying in the interval [z, z + 1),

.

L, - number of years lived in the interval [z, z + 1),

L,=1,— %dm assuming on average people survived the first half of the interval.

T, - total number of years lived beyond age z,

T, =L+ 11

¢, - life expectancy at age =z,

b=
The life expectancy e, summarizes the mortality experience for a subject beyond age x. The
quantity p, = 1— ¢, is the probability of surviving in the age interval [z, x + 1), given he/she
has survived till age x. The probability of surviving until age x, S(z) can be expressed as
the product

S(x) = pop1 - - Pu

The life table 2.1 is adjusted from Chiang, [22] and it describes the California population in
1960. The initial number [, - number of alive at age x can be arbitrary radix, here chosen

to be 100,000. Table 2.1 shows that of every 100,000 persons born in alive will 97,496 will

survive their second birthday (at age 3), provided that experience the same mortality as the
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California population in 1960.

Table 2.1: Life Table for the total California population, 1960

0-1 | 100,000 | 2378 | .2378 | 97,860 | 7,058,410 | 70.58
1-2 1 97,622 | 146 | .00150 | 97,539 | 6,960,550 | 71.30
2-3 197,476 | 95 .00097 | 97,424 | 6,863,011 | 70.41
3-4 | 97,381 | 77 .00079 | 97,340 | 6,765,587 | 69.48
4-5 197,304 | 58 .00060 | 97,274 | 6,668,247 | 68.53

2.6.1 Multi-State Life Tables

Life tables can be generalized considering more than 2 states. Peeters ([10]) presents life
tables with states CVD, CHD or CVA, one at a time, added to the healthy state and the
death state. In this case, all the formula above would be state specific. For example d;;(z)
is the number of transitions from state i to state j in the interval [z, 2 + 1). Focusing on
one transition at a time, the probability of developing the disease can be estimated. If we
focus on the states i = healthy and j = CHD, we need to treat CHD as a failure, and death
as censoring. Petters ([10]) has estimated the probabilities of developing different types of
CVD, using a Multi-state life table based on the cohort from the Framingham Heart Study.

Some of the estimated probabilities are presented in the table below:

Table 2.2: Lifetime risk of developing CVD for individuals free of CVD at age 40

Probability of developing a disease
Males
CVD | Acute M.I. | Stroke. | CHF
.67 .32 16 18
Females
CVD | Acute M.I. | Stroke. | CHF
.59 A7 21 19
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2.6.2 State specific life expectancies

Life expectancies can be calculated from the estimated survival function specific for a

particular state. In this way the life expectancies for a healthy subject can be compared

with the estimated time free of a particular disease. The results from Peeters ([

presented in Table (2.3) below.

Table 2.3: Life expectancy (LE) and residual LE free of disease

LE and residual LE free of disease
Males LE free of history of
Age | LE | CVD | CHD | M.I. | CVA | CHF
50 |26.2|19.9 | 21.5 |23.3 |252 | 255
70 | 120|738 |869 |[994 |11.2 | 114
Females LE free of history of
Age | LE | CVD | CHD | M.I. | CVA | CHF
50 | 32.1 (264 | 284 |30.9 309 |31.2
70 |16.0 | 11.3 | 13.0 | 15.0 | 149 | 15.2

]) are

At age 50, the life expectancy for a male is 26.2 years and the life expectancy free of CVD

is 19.9. This leaves 6.3 years of the expected residual life spent with CVD. For women at age

50, 5.7 years are estimated to be spent with CVD. Men have higher estimates for expected
years lived with CVD at both age 50 and 70. On the other hand 50 year old females will

live on average 0.29 more years with stroke and 0.26 more with CHF compared with males.

As indicated by the authors, the greater longevity of females leads to higher burden of some

of the diseases.

The multi-state life table method is designed primarily for situations in which actual failure

and censoring times are unavailable and only the total numbers are given.

They are

appropriate for a homogeneous population, since the effects of covariates are not considered.
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CHAPTER 3

Three-state Models

3.1 The illness-death model

We introduced the mortality and the competing risk models in Chapter 2. These models have
been used extensively for modeling the risk of binary outcomes. As the population continues
to age however, the process of moving from health to death becomes more complex with
larger and larger proportions of the population living with prevalent chronic diseases. This
Chapter deals with the next step in understanding this process of movement between states;

it focuses on the 3 state health, illness, and death model.

&g (L)
state 0: o state 1:
healthy o CHD
oy () x,(t,d)
state 2:
dead

Figure 3.1: Illness-death model

Figure 3.1 presents the three state model commonly referred to as the illness-death
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model. The 3 states, healthy, illness and death, are denoted state 0, state 1 and state 2
respectively. The illness-death model has been widely used to compare mortality before and
after a particular event such as heart transplant (Hougaard [23]) or bone marrow transplant
(Aalen [13]). This model was discussed in early papers by Fix and Neyman [24] and Sverdup
[25]. There has been less use of the model for considering the interrelationship of health,
chronic diseases such are cardiovascular or cerebrovascular disease, and death.

There are two equivalent methods for applying the multi-state approach to a particular

problem:

e Estimate the transition (hazard) rates for moving between different states or equiva-

lently,

e Combine the transition rates to obtain transition probabilities.

In this chapter, we will use both approaches.

In sections 3.4.2 and 3.4.1 we will examine methods for estimating the transition rates
0 — 1 and 0 — 2. The goal is to compare the two transition rates, before and after CHD.
This could be used to evaluate the role CHD plays in mortality.

In section 3.5 we estimate all three hazard rates and combine these estimates (often called
a synthesis of a multi-state model), in order to calculate transition probabilities.

Transition probabilities are the conditional probabilities of moving to a particular state
given their previous history and can be used for estimating the prognosis of individuals,
given their event history (in this case whether they have developed CHD) at a given time.

In order to compare the hazard rates, we have to decide what they would have in common
and in what ways they will differ. In this chapter we assumed the two hazard rates (for
moving from state 0 to state 2 and for moving from state 1 to state 2) are proportional, i.e.
they have the same baseline hazard up to a constant of proportionality that is a function
of their characteristics. In section 3.4.2 the two transition rates share the same covariate
effects (coefficients) and the effect of CHD is modeled as a multiplicative factor increasing
the hazard after a person enters the CHD state.

In section 3.5, the effect of CHD is modeled as the covariates are considered to have

different effects before and after CHD. Next, we will introduce some notation and definitions.
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Denote ¢;, the time of entering state 1 (for the subjects who enter it) and d = ¢t —¢; time
since entering state 1. We have 3 possibilities for modeling the hazard rate a5 for moving

from state 1 to state 2 depending on the assumption we make:
o If we assume ay3(t) does not depend on d, we have a Markov model.

o If we assume the hazard rate ais(t,d) depends on the time in state 1, the model is an
extended-Markov model. (Note that we can write aq2(t, d) or aga(t,t;) because of the

linear relation d =t —t¢;.)

e In the special case aj5(d) is a function of d, the time spent in state 1 alone, the model

is called semi-Markov.

3.2 Data

3.2.1 The Framingham Heart Study.

The Framingham Heart Study was designed by The National Heart, Lung and Blood
Institute (NHLBI) (formerly known as the National Heart Institute) to identify common
factors or characteristics that contribute to cardiovascular disease (CVD). The study began
by recruiting an original cohort of 5,209 men and women between the ages of 30 and 62
from the town of Framingham, Massachusetts in the period 1948-1952. The cohort has been
followed since then, with exams every two years. Data on the vital status and the occurrence
of CVD was recorded. Statistical analysis of the data has identified several major CVD risk
factors, as well as information on the effects of these factors such as blood pressure, blood
triglyceride and HDL cholesterol levels, age, gender, smoking etc. An Offspring Cohort was
added in 1971, and a Third Generation Cohort began in 2000.

3.2.2 The data files.

The data set we will use contains the exact dates of CHD or death for 4,266 people from the
Framingham Heart study. A new procedure for measuring cholesterol was adopted at exam
4 onwards and is considered more reliable. We will use exam 4 as a baseline (follow up time
t = 0). The other covariates in our analysis were measured at exam 4. The last time of death

recorded is at 37.69 years. There were 518 individuals who had experienced at least one event
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(CHD, CVA or death) before exam 4, and were excluded from the analysis. We also excluded
the individuals with missing at least one of the covariates cholesterol, smoking status, age at
exam 4 , diabetes or systolic blood pressure. There were 3,201 individuals (1,520 men and
1,681 women) who were included in the analysis. There were 2,722 deaths and 1,400 CHD
times recorded. The data were acquired through a limited public use agreement with the

National Heart, Lung, and Blood Institute.
3.3 Exploratory analysis

We introduced the Framingham heart study in section 3.2 and the data set which will be used
in this section. The variables considered in our analysis are age at exam 4, diabetes, smoking
status, systolic blood pressure, total cholesterol level and gender. Three new covariates will
be used as well: z is defined as an indicator for being in state 1, and c_risk is an indicator for
just moving to state 1 and d is the time spent with CHD. They are time dependent variables
and do not depend on the the baseline covariates, rather they describe the transitions in the

3 state model. All variables are presented in Table 3.1.

Table 3.1: Variables

Categorical Variables
psm indicator for smoking
diab indicator for diabetes
z indicator for being in state 1 (CHD state)
c_risk | indicator for just entering state 1
Continuous Variables
age age at exam 4 in years
spf systolic blood pressure
chol total cholesterol level
d time with CHD in years

We described the illness-death model in section 3.1. It consists of 3 states: healthy state,
illness and death, denoted state 0, 1 and 2 correspondingly. Initially every subject was in
the healthy state 0 and there were no drop outs from the study. Among the 1,520 men in
the group, 767 visited state 1 (CHD),among them 637 moved to state 2 (died). There were
683 males who moved directly to state 2. At the end of the study, 130 men were censored
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in state 1 and 70 were censored in state 0.

From the 1,681 women in the study, 633 visited state 1, and from them 468 eventually moved
to state 2. There were 934 direct transitions from state 0 to state 2 and 114 women censored
in state 0.

The most noticeable differences between the two genders are:

e 27% of the women have both events, versus 42% of the men

e 56% of the women died without CHD, versus 45% of the men

It appears CHD plays a bigger role in mortality in the male group.
For the 637 men and 468 women who died with CHD, the distribution of the time spent
with CHD is presented as histograms in figures 3.2 and 3.3.

Days spent in the CHD state, men

Frequency
WIDD

0 5000 10000 15000
bin=435 days

Figure 3.2: Time spent in the CHD state, men

In both cases, there is a large number of people failing very shortly after being diagnosed
with CHD. One of the components of CHD is sudden coronary death, which is defined as
a death which occurs within 24 hours of the onset of CHD. In the male group, this type
of death accounts for 134 cases, which is 10% of the total deaths. Similarly, in the female
group, we have 94 deaths (6% of the total deaths). There are two points to be made here.
First is that CHD in females includes a higher proportion of Angina Pectoris (AP), which is
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Days spent in the CHD state, women

Frequency
1@0

50
1

0 5000 10000 15000
hin=5392 days

Figure 3.3: Time spent in the CHD state, women

milder form of CHD, compared to Myocardial Infarction (MI). We have 50.98% MI in the
male group ( 23.86% recognized with ECG) versus 39.18% for women ( 17.38% recognized
with ECG). On the other hand men have 30.51% AP, while it accounts for 43.13% of the
CHD cases in women.

The other point is that the proportion of sudden deaths has changed in the last decades
perhaps due to advances and wider availability of medications and preventive health care.
To look for a possible trend we calculated the proportion of sudden deaths (to the total
number of deaths) for each year. The results are presented separately for men and women
in figures 3.4 and 3.5.

We can observe a significant drop around the 12" year of follow up in the male group.
In this group, the average number of sudden deaths per year is 3.37 and the total average
number of deaths is 34.73. The proportions fluctuate due to the relatively small number of
deaths, when broken into one year periods. The 12" year of follow up corresponds to the
early 1970’s. Anderson [7] states that the early 1970s is a time “when there was a sharp
decrease in CHD mortality rates in US and extensive intervention against risk factors being
practiced”.

The covariate c_risk was defined as an indicator for just moving in state 1. It will be
useful in accounting for the failures occurring immediately after moving to state 1, as well

as measuring the downward trend for the percentage of sudden deaths.
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proportion of 'sudden’ deaths in men
at each year: (number of deaths, just entered chd) / (number of deaths)

proportion
z

0 10 20 30 40
years of follow up

Figure 3.4: Proportion of sudden deaths, men

proportion of 'sudden’ deaths in women
at each year: (number of deaths, just entered chd) / (number of deaths)

proportion
1
1

.05
1

T
0 10 20 30 40
years of follow up

Figure 3.5: Proportion of sudden deaths, women
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Time in our analysis is the follow up time. This is the case with most of the
epidemiological studies. Using age as the time scale has been proposed in the literature,
as well [9].

The Framingham Heart study is an observational study with more than 45 years of follow
up. With such a long time span, the use of follow up time presents challenges. For example,
if we use the Cox model, the coefficient for age (3,4 has the interpretation of the hazards
ratio, for two individuals, one being 1 year older than the other. In other words, the hazard
ratio for two men age 40 and 50 at the beginning of the study should remain the same 20
years later, when they are 60 and 70. This assumption may not be satisfied.

Another challenge related with the long follow up period is that the covariates are recorded
at baseline. Smoking status for example was recorded in the early 1950’s when smoking was
common, particularly in men. In the 1960’s many people quit smoking and the effect of this
variable may be expected to be reduced with time.

These two observation, as well as the analysis that we will perform later, suggest that
the effect of some variables may change with time. In order to capture this, we will consider
models where the coefficients in the Cox model are not constants, but piecewise constants.

To do so, we will split the follow up time into four time intervals:
[7—07 7_1)7 [7—17 7_2)7 [7—27 7_3) and [T37 T)

where 75 = 0 corresponds to the baseline (exam 4), and the other cut off points in years are:
71 =87, 79 =15.7, 73 = 24.7 and T = 37.7 is the end of the study.

The choice of the other split points were made so that we have a split point corresponding
to early 1970’s and to have an interval in the beginning, where figures 3.4 and 3.5 suggest
CHD played a bigger role in mortality.

We will adopt the following convention, for any variable v, we denote:

UX] = UI[T(J',l) <it< Tj)

i.e. the covariate v for the duration of the period [7;_1),7;). For example, we define the
covariate z(t) to be an indicator for having CHD. Thus, 2X1 = 1 for a subject if at time ¢
he/she is in state 1 and t < 7. We have z = 2X1 + 2X2 + 2X3 + 2X4, and this will allow
us to model the effect of CHD with a coefficient that is a step function.
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3.4 Multi-state models for the illness-death model

As outlined in Chapter 2, the most general case would require that hazards be modeled
separately for each transition. In the Framingham study, it is particularly interesting to
compare the hazard rates before and after entering the disease state. We will use models

based on the Cox model and the Aalen additive model.

3.4.1 Markov Models

The simplest model is a Markov model that assumes the hazards for the transitions 0 — 2
and 1 — 2 are proportional, i.e. ag(t) = capi(t). In other words the hazard of dying
changes by a factor the instant a subject gets CHD, regardless of the time this happens or

the covariates. Under the Cox proportional model, the hazard rates are:

O‘éz@) = ag(t)exp(B'X;)
ahy(t) = ag(t)exp(B' X + 3z)

where (3, = log(c) and X is the vector of covariates for subject i. The covariate z is an

indicator for having CHD and was introduced above. Strictly, it can be defined as follows:
2(t) = It > u]

It is zero before the time u of getting CHD, and one afterwards. For the individuals who do
not get CHD, u = oo. This is an example of a Markov model. We fit separate models for
males and females. The results are presented in Table 3.2.

The coefficient for age in the female group is modeled as a step function: it is .046 for the
first two time periods of the follow up time, and .073 for the third and fourth time periods.
The variables agelhal f = ageX1 + ageX2 and age2hal f = ageX3 + ageX4 are used, since
we found that if we use the variables ageXj for j = 1,...,4 the first two coefficients are
similar, and far apart from the other two. The Likelihood ratio test did not show a better
fit for a model with all four coefficients (p-value 0.33). We will comment on this fact later,
when we compare it with the extended Markov model.

The coefficient (3, suggest that a woman with CHD has 3.15 times higher hazard of dying in

the first three time intervals. The hazard ratio reduces to 1.10 for the fourth time period.
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Table 3.2: Markov Models

Markov Model for Females

_t g Std. Err. | z P> |z| | 95 % Conf. Interval
agelhal f | .0458423 | .0076186 | 6.02 | 0.000 | .0309101 .0607746
age2hal f | .0735431 | .0043828 | 16.78 | 0.000 | .0649529  .0821332
diab 7680075 | .155011 | 4.95 | 0.000 | .4641916 1.071823
psm 3301785 | .0576088 | 5.73 | 0.000 | .2172673  .4430897
spf 0065403 | .0011432 | 5.72 | 0.000 | .0042997 .008781

z 1.149581 | .08949 12.85 | 0.000 | .9741837 1.324978
2 X4 -1.050464 | .1183848 | -8.87 | 0.000 | -1.282494 -.8184344

Markov Model for Males

t g Std. Err. | z P> |z| | 95 % Conf. Interval
age 0757493 | .0038013 | 19.93 | 0.000 | .0682988  .0831999
diab 4692469 | 1469549 | 3.19 | 0.001 | .1812206 .7572733
psm 3482076 | .0657918 | 5.29 | 0.000 | .2192581  .477157

spf 0128758 | .0017516 | 7.35 | 0.000 | .0094428 .0163089
spfX4 -.0107079 | .0029592 | -3.62 | 0.000 | -.0165079 -.004908

chol -.0026135 | .0007346 | -3.56 | 0.000 | -.0040533 -.0011736
zX1 2.613352 | .192252 | 13.59 | 0.000 | 2.236545 2.990159
2X2 1.473335 | .1446044 | 10.19 | 0.000 | 1.189916 1.756755
2X3 1.207545 | .1020531 | 11.83 | 0.000 | 1.007525  1.407565
2X4 4848401 | .0833764 | 5.82 | 0.000 | .3214254  .6482549

We compare different models using the Likelihood ratio test, which is described in detail in
the Appendix.

The model for males requires the coefficient for the variable z to be modeled as a step
function as well. During the first time interval, the proportion of sudden deaths was very
high and is reflected in the hazard ratio, estimated as 13.64. The hazard ratio estimated for
the fourth interval 1.62. The coefficient for the cholesterol level is negative. We will compare
this result with the estimate from the Aalen model. The role of this covariate for getting
CHD is examined in section 3.4.4, here we model the hazards of dying.

The coefficient for blood pressure is modeled as a step function, with a separate constant for
the fourth interval. The effect is reduced substantially. This may be attributed to the long
follow up period and its variability. Even if we assume that the two measures are highly

correlated, the availability of effective drugs regulating high blood pressure in the later time
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periods inevitably reduced its effect.

Using only an indicator for the CHD, the coefficients reflects both the burden of sudden
deaths as well as for deaths which occur after a long time spent with CHD. In order to
account for the sudden deaths, we will use an extended Markov model, i.e. we will allow the
hazard to depend on the time spent in the CHD state.

A test based on the scaled Shoenfeld residuals was used to test for the proportionality
assumption (described in the Appendix). The combined p-values for these test were .06
for females and .14 for males. The variable z has the most contribution for the large test

statistics (small p-value) in the model for women.

3.4.2 Extended Markov Models

The models we used in the previous section assumed that having CHD increases the mortality
by a factor, which is a constant, i.e. the same for the first day after getting CHD as one year
later. As we discussed in section 3.3, the mortality is very high at the beginning, particularly
the first day (sudden coronary death). The next step in our analysis is to include time since
diagnoses as a covariate. This leads to a general class of Markov models - the so called

Extended Markov models. The hazard rates are modeled as follows:

aly(t) = ag(t)exp(B'X; + 0. + f(d))

where d is the time spent in state 1 and f(d), d > 0 is any function and z is the indicator
for entering the CHD state introduced above. The function f(d) needs to be defined for
d=0,1,... which represents the number of years after the diagnoses.

For a small data set, an extended Markov model can be fit with splitting the records at
the failure times, that is the record for subject ¢ will be split at any time somebody dies before
he/she does. This is not feasible for a data set with more than a thousand observations.
As reported by STATA, this will create more that 2,000,000 observations. In order to avoid
this, we rounded the death times and the CHD times to the next year. Potentially, this
may artificially increase the number of people who has died immediately after getting CHD.
However, in our data set, among the 357 people with CHD and death within a year apart,
216 died within a day from the diagnoses. For the rest of this section, we will work with

both events measured in years.
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We will use two parameters to describe the function, one for the value f(0) and the other
for a linear trend f(d) = kd,d =1,2.... The value of the function at d = 0 will be modeled
as a separate covariate c_risk, which is defined to be one only on the year the diagnoses is
made for CHD. Therefore, this is a time varying covariate and its value for subject ¢ will be
1 for at most one year. If subject ¢ visits state 1, the covariate c_risk has the value 1 for just
that year.

Often it is the case, that if a subject survives a certain amount of time after getting the
disease, his/her chances improve. The second coefficient &, used to determine the function
f(d) measures the long term effect of the disease. If a subject has spent d years in state 1,
the hazards ratio, compared with a person without CHD is exp((3, + kd). If the coefficient
k has negative value, it will indicate the chances of a patient are improving the longer they

state in state 1, compared with a person who has spent less time in state 1.

Let d; and dy be the time spent in state 1 for two subjects with CHD. Their hazards
ratio is exp(k(d; — ds)), as long as both of them has survived the first year. One limitation
of modeling the function f(d) with only one coefficient for the range d > 0 is that the
hazards ratio depends only on the difference of the time spent in state 1 , i.e. the same for

(dl = 2, d2 = 3) and (dl = 15, d2 = 16)

Next, the results for males and females are presented in Table 3.3 using the Extended
Markov models.

The model for females has coefficient 3,4 which is a step function, with very similar
values to the Markov model. The coefficients for diabetes and smoking status are slightly
smaller in the Extended Markov models in both genders. The same holds for the coefficients
for the indicator variable z. This was expected, since in the Markov model, the coefficient
has to account for both the very high rate of sudden coronary deaths, as well as for the
increased mortality in general.

The Markov and the extended Markov models have the coefficients for the variable z as step
functions. In the both groups, the step function has two different values, one for the first 3
time periods and a noticeably smaller coefficient for the last time period. Note, that for the
fourth period, the coefficient for the indicator z is 8, + 3,x4. Therefore, the coefficient for

the fourth intervals are .27 in the male group and .08 for females.
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Table 3.3: Extended Markov Models

Extended Markov Model for Females

t 6] Std. Err. | z P> |z| | 95 % Conf. Interval
agelhal f | .045257 0075757 | 5.97 | 0.000 | .0304088 .0601051
age2hal f | .0701719 | .0043682 | 16.06 | 0.000 | .0616104 .0787334
diab 6464857 | .1561526 | 4.14 | 0.000 | .3404322 .9525392
psm 2938729 | .0574288 | 5.12 | 0.000 | .1813145 .4064313
spf 0063993 | .0011363 | 5.63 | 0.000 | .0041722 .0086264
c-risk 1.651802 | .1529767 | 10.80 | 0.000 | 1.351973  1.951631
criskX4 | -.5922909 | .21503 -2.75 1 0.006 |-1.013742 -.1708397
2 6928349 | 1205777 | 5.75 | 0.000 | .4565069 .9291628
2 X4 -.6100307 | .1418639 | -4.30 | 0.000 | -.8880788 -.3319826
d -.0144801 | .0076415 | -1.89 | 0.058 | -.0294571 .0004969
FExtended Markov Model for Males

t g Std. Err. | z P> |z| | 95 % Conf. Interval
age 0718955 | .0037845 | 19.00 | 0.000 | .0644781  .0793129
diab 3909468 | .147081 2.66 | 0.008 | .1026734 .6792202
psm 3279029 | .0656417 | 5.00 | 0.000 | .1992475 .4565582
spf 0104134 | .0016919 | 6.15 | 0.000 | .0070974 .0137294
spfX4 -.0082601 | .0029135 | -2.84 | 0.005 | -.0139704 -.0025498
chol -.0021518 | .0007303 | -2.95 | 0.003 | -.0035832 -.0007203
criskX1 | 2.185154 | .2112392 | 10.34 | 0.000 | 1.771133  2.599176
criskX?2 | 1.619721 | .1890416 | 8.57 | 0.000 | 1.249206  1.990236
criskX3 | 1.16372 | .1582187 | 7.36 | 0.000 | .853617  1.473823
criskX4 | 1.060161 | .1508432 | 7.03 | 0.000 | .764514 1.355808
z 9098498 | .0907009 | 10.03 | 0.000 | .7320793  1.08762

2 X4 -.6375623 | .1257962 | -5.07 | 0.000 | -.8841183 -.3910063
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The variable c_risk was not included in the Markov models, since it depends on d - the
time spent in the CHD state (in this case d=0). This is an indicator variable, for just entering
the CHD state. Strictly speaking, the indicator is one if the CHD and death occurred in
the same year, since the CHD and death dates were rounded to the beginning of the next
calendar year. This variable accounts precisely for the high rate of mortality for people just
entering state 1. The figures 3.4 and 3.5 show that the effect of this variable is reducing for
the years when the Framingham study took place. The coefficients in our model reflect this
downward trend - as in the figures this is more noticeable in the males group.

Cholesterol is a significant variable for males, with a coefficient suggesting beneficial effect.




This was also observed in the Markov model and we commented there for possible reasons.
Later, we will see that the effect of cholesterol for the transition from the healthy state to
the CHD state is adverse.

So far we discussed the differences between the Markov and the Extended Markov models
for both genders. We have observed similar differences/similarities. Next, we will compare
the Extended Markov models for the two gender groups.

The effect of CHD to mortality can be seen through the coefficients for the variables

indicating transitions in the multi-state model, i.e. the variables z and c_risk. For both
of them the effect is stronger in the male group. The effect of entering the CHD state is
modeled as a step function with four different values in the male group, while two values
are sufficient for females. This indicates that the effect of CHD, particularly sudden deaths
reduced more significantly in the male group. Another reason may be that there were more
males dying after just entering the CHD state and therefore make it more noticeable (the
test for significance of the coefficients has more power).
The effect of the covariate d - time spent in the CHD state was not significant for males and
has a negative value for females. This indicates reducing the effect of CHD with the time
spent in this state in women. We observed in the exploratory analysis that women spent
more time in the CHD state and the effect of CHD to mortality appears to be smaller.

In summary, the effect of CHD to mortality in the male group was modeled as a factor
to the hazards ratio - either exp(f, + (. _isk) initially and exp(f3,) later on. The mortality is
higher at the beginning and stabilizes afterwards.

In the female group the effect of CHD was modeled as a factor: exp(8, + Berisk) initially
and exp(f, + df4), which reduces with the time a women stays with CHD.

One difference between the models for males and females, in both the Markov and the
Extended Markov models, is that the coefficient for age is modeled as a step function for
females. As we have commented in the beginning of the Chapter, this is to be expected, since
otherwise we assume that the hazard ratio for two individuals age 40 and 50 will remain the
same, even when they are 70 and 80. Therefore, we expect it to increase, and in the model
for male a variable ageX4 has a borderline p-value 0.07. If we use this model we will obtain
the coefficients 3,5 = .069 and Bu4ex4 = .013. Therefore, the effect of age will be modeled
as a step function, with the value 0.069 for the first three time periods and 0.082 for the last
period.
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In both models for males, i.e. if we use a model with a constant as a coefficient for age
(covariate age) or a step function (variables ageX4 and age ) the effect of age changes less
for the duration of the follow up. We have a noticeable difference (0.025) in the female group
for the first and the second half of follow up. One explanation we can offer is that the effect
of CHD is stronger in males, and accounting for it leaves less explanatory power for age. In
the female group, particularly since many women live many years in the CHD state, age is
more important - loosely speaking, at the end they often die of old age, even if they suffer
from CHD. Another reason is that in the first half, fewer women died, so the effect is not so
pronounced.

We compare the coefficients for the remaining variables: the effect of smoking and systolic
blood pressure is slightly higher in males, the effect of diabetes is higher in women - a result
reported by other studies as well.

A test based on the scaled Shoenfeld residuals was used for the proportionality assumption.
The test is detailed in the Appendix. The combined p-values for this test were .48 for females

and .58 for males.

3.4.3 The Aalen additive model

The Aalen additive model was introduced in Chapter 2. The main difference from the Cox
model is that the hazards are modeled as a linear combination of the covariates. The Aalen
model allows for time varying coefficients and time varying covariates. The hazard function

for the transition ¢ — j is modeled as:
a;i(t, X) = Bo(t) + Br(t) X1 (t) + ... + Bi(t) Xi(t) (3.1)

In our case, we have fixed time covariates, but the possibility of having time-varying
coefficients is appealing, having discovered in the previous section that the effect of some
covariates changes with time.

The regression coefficients (35 (t), and possibly also the covariates will depend on which pair
of states is considered. Let’s assume there are k covariates considered for the transition (i, j)
and we observe n individuals. The design matrix Y ;;(t) (n x k + 1) is defined as follows:
There is one row for each subject, if he is still at risk, the row is (1, X;(¢),..., Xx(t)), and
zero if the individual is not at risk. The multivariate intensity process for the multivariate

counting process for the transition (4, 7) can be written in the matrix form:
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)‘ij(t) = Yij(t)/gij(t)
where B,;(t) = (Bo(t), B1(t), ..., Bk(t))’. We are interested in estimating the cumulative
regression coefficient functions By (t) = f(f Br(u)du. The vector of these functions for the
(4, ) transition is denoted by B;;(t). Following Aalen [12] the vector B;;(t) can be estimated
by:
t
By(t) = [ Hy(s)iN, (o
where H;;(t) is the generalized inverse of Y;;(t) and IN;;(t) is the multivariate counting
process, counting for each individual the transitions from state ¢ to state j. The estimation
procedure is well defined only for the time when the matrix Y;;(¢) has full rank. The matrix
H () is calculated as:
Hj(t) = (Yi;()Y 5(1) 7" Y7;(t)

As noted in Klein and Moeschberger [26], this is a least-square estimation technique. For
comparison, the Cox proportional hazards model relies on likelihood based estimation. The
basis for the statistical theory of the estimator Bj;(t) is the fact that By;(t) — By;(t) is a
martingale. Addreg - a program in R, has been developed by Aalen and Fekjer and is available
online, (see [13]) which fits the Aalen model. We have used Addreg to fit the Aalen model for
each for the three transitions 0 — 1, 0 — 2 and 1 — 2 separately. This is a major difference
from the approach we used with the Cox model- we assumed the two hazard rates 0 — 2 and
1 — 2 to be proportional. Further, the Aalen model obtains estimates for the cumulative
hazard function B;;(t) and not for the coefficient function 3;;(¢). Smoothing estimators have
been considered for [ (t), Aalen [27], but this is beyond of the scope for this thesis. The
cumulative coefficient function is an integral of the coefficient function and mathematically
can be obtained by differentiating. However, the estimate Bij(t) is a step function and
differentiating is not possible. We will make inference for the coefficient function based on
the slope for the cumulative hazard function. We will present the coefficient functions for
the transitons 0 — 2 and 1 — 2 and will compare them with the inference we reached from
the previous section. The transition 0 — 1 will be discussed in the next section, where we
will discuss methods to combine information from different transitions.

We note that the results from the previous section has been obtained after we rounded

the CHD and the death times to the next year (considered them at the end of the year). The
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Aalen model is fit with the original data recorded in days. When individuals have tied CHD
and death times (sudden coronary death) we assumed that CHD occurred 0.5 days earlier.

The Aalen model does not allow tied failures.
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Figure 3.6: Transition 0 — 2, Females

Figures 3.6 and 3.7 present the 6 cumulative coefficient functions for the transitions 0 — 2
and 1 — 2 in the female group. The 95% Confidence limits for Bij (t) at every time point ¢
are included as well. We will stress again that this are confidence bounds for the cumulative
function and cannot be directly used as confidence bounds for the regression functions.

The first observation is that the estimate for the cumulative regression function for age
has an increasing slope. It increases smoothly for the transition 0 — 2 and resembles a

piecewise linear function for the transition 1 — 2. This fact suggests that at the beginning
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of the study, the mortality of women with CHD was not affected by their age. We showed
that at the beginning of the study the proportion of sudden deaths was high and the mortality
rate among women with CHD was more to do with this fact, than with age. Later on, as
the cohort ages, age plays more important role. We concluded in the previous section that
many women with CHD appear to die of old age, i.e. the mortality is driven by the aging
process and CHD plays a less important role. The piecewise linear shape of the cumulative
regression coefficient for age in the female group may be used to explain why we needed
the coefficient 3,4, to be a step function in the Extended Markov model. However, as it
can be seen from the the 95% confidence bound, the estimate has larger variance that the

estimate for the transition 0 — 2. The confidence bound B, (t) for males is narrower for
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the transition 1 — 2, perhaps due to the higher proportion of men getting the disease.

The plots of the cumulative regression functions for cholesterol are consistent with the
results from the Extended Markov models in both genders. The covariate chol was not
significant for women and appeared to be protective for males (negative coefficient o).
The covariate diab, which is an indicator for having diabetes at baseline was found to have
stronger effect in females in the previous section. This can also be observed from the slope
of the corresponding cumulative regression functions. For the transition 0 — 2 in females,
the slope seems to be initially zero, while in the transition 1 — 2 is steeper at the beginning.
This can be just due to the later onset of CHD in women. In both Extended Markov models,

the covariate diabX4, which is the indicator for diabetes only for the last time period was
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found to be non-significant.

3.4.4

In this section we will model the transition 0 — 1. If a person dies before developing CHD,
he/she is considered censored. We will use both the Cox and the Aalen models to model
this hazard rate. The covariates z and c_risk, will not be used in this section, since they

are always zero for this transition. Figures 3.10 and 3.11 present the results from the Aalen

Modeling the transition to CHD

model. The estimated coefficients from the Cox model are given in Table 3.4.

The coefficient for age in the model for females is not significant. The reason for this

finding is that the CHD is a disease that peaks at the age interval 60-70, (mean values 65.52
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Figure 3.10: Transition 0 — 1, Females

for males and 69.28 for females). Initially, at the beginning of the study, the mean age
of our cohort is 51.3 and older people tend to have more transitions to state 1. Later on,
when the mean age of the cohort passes the age at which CHD peaks, more younger people
tend to transition to state 1. The Aalen model can help us understand this phenomena.
The regression coefficient function for age (as seen as the slope of the cumulative regression
function) is positive initially, and somewhere around 20 years becomes negative. The time
at 20 years of follow up corresponds to mean age for females of around 71.

The finding that the coefficient for age in the Cox model for women is not significant has
several possible explanations. One is that other factors have more influence for whether

a woman gets CHD or not. The second reason is that the Cox model has the ability of
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summarizing the effect of a variable for the whole interval in the study. If at the beginning
age is associated with a higher hazard of getting CHD, but later on with lowering it, the Cox
model combines these effects into one coefficient. The third reason, we can think of, is that
there are smaller percentage of women getting CHD than men and the test of significance
has lower power. Lastly, aggressive prevention programs were organized during the time of
the Framingham study. It is possible, they were more focused on a particular age group,
and therefore confounded the effect of age with that of the program.

Similar results are found for the males. The coefficient for age in the model for males
is significant but with a small magnitude (0.013), compared with the coefficient for the

transition to state 2 (0.77) from Table 3.2. The Aalen model suggests that the coefficient
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Table 3.4: 3 state model, transition to CHD state

Model for Females, transitions 0— > 1
_t g Std. Err. | z P> |z| | 95 % Conf. Interval
age_exam4 | .0042861 | .0057243 | 0.75 | 0.454 | -.0069333 .0155055
spf 0099403 | .0016677 | 5.96 | 0.000 | .0066717 .0132089
diab 1.084281 | .200543 | 5.41 | 0.000 | .6912239 1.477338
chol 0037301 | .0009114 | 4.09 | 0.000 | .0019438 .0055164
Model for Males, transitions 0— > 1
t 6] Std. Err. | z P> |z| | 95 % Conf. Interval
age_exam4 | .0132303 | .0047431 | 2.79 | 0.005 | .003934 0225266
spf 0085506 | .0018134 | 4.72 | 0.000 | .0049965 .0121048
diab ATI87T | 1874982 | 2.52 | 0.012 | .1043873  .8393666
chol 0044723 | .0008736 | 5.12 | 0.000 | .0027602 .0061845

function for age becomes negative around the same time as in the female group. We decided
to keep the coefficient for age in the female group, as we are going to use it for calculating
the transition probabilities in the next section.

The coefficients for cholesterol in both groups are significant, indicating 5% increase hazard
(for males) for a difference of 10 mg/dL (for males). The cumulative regression function in
the Aalen model has roughly a constant slope, except for the end of the study, where the
risk set is small.

The coefficient for the variable diab, indicator for diabetes, is significant for both males and
females. Diabetes increases the hazard of getting CHD by a factor of 2.94 in women, and
1.60 in men. It is interesting to look at the graph of the cumulative hazard function in the
Aalen model, particularly in the female group. The slope is close to zero initially, later on
rises up very sharply and again levels off. If we look in the diabetes cases, there are 45
women with diabetes, with 32 in the risk set (here risk set is alive, without CHD) at 3,578
day of follow up (9.8 years) . By the 5, 578 day of follow up (15.2 years), there are 12 left
in the risk set. We can observe the ability of the Aalen model to pick up the effect of a
covariate locally, but it comes as a shortcoming as well. On the other hand, the Cox model
summarizes the effect of diabetes for getting CHD.

The effect of systolic blood pressure is significant for both genders, with hazards ratios 1.10

(females) and 1.09 (males) for an increase of 10 mmHg,.
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3.5 Transition Probabilities

3.5.1 Transition Probabilities based on the Cox model

We defined the transition probabilities in Chapter 2:

Bij(s, t) = P(X(t) = j|X(s) = 1)

where 7, 7 are two states and s < ¢ are two points in time.

In this section we will focus on combining the estimated hazard rates from the individual
transitions to obtain transition probabilities. This is sometimes called a synthesis of a multi-
state model [28, 20].

In the simplest case, given the individual’s set of covariates, we can estimate Py (0, t)
and Ppy(0, t) - the probability that by time ¢, the subject will have developed CHD or have
died.

In a more general situation, we may be provided with the information whether the
individual has entered the CHD state by time s. The transition probabilities Py(s, t) and
Pis(s, t) will compare the individual prognosis, conditional on the information up to time s.

We derive the formulas for the transitional probabilities, similar to the ones derived for
the competing risk model in Chapter 2.

The probability of not leaving state 0 is:

Pu(s, 1) = exp (~ [ fam(u) + o)) (32)

The transition probability Fy; in the Markovian case is:

Poi(s, t) = / Poo(s, w)ap (u) Pry(u, t)d(u) (3.3)

where

Pu(u, t) = exp (— / t alg(:c')d(x)> (3.4)

The transition probabilities Pjo(u, t) and Pyy(u, t) can be estimated
P12(u, t) =1- PH(U, t), POQ(U, t) =1- POl(U, t) — PO()(u, t) (35)
Another way to estimate Py (u, t) is
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P()Q(S, t) = / P()()(S, U)Oém(u)Plz(u, t)d(u) +/ P()()(S, U)Oé()Q(U)dU (36)

In the above formula, the first term corresponds to probability of going to state 2 via state
1, and the second term, to the probability of going directly to state 2. The two expressions
for Pys(s, t) are equivalent.

If we have the extended Markov model then Pii(u, t) above and in Equation 3.3 has to
be replaced by

Pii(u, t) =exp (— /t ape(z, © — u)dx) (3.7)

In section 3.4 we developed models using the variables z- an indicator for being in the
CHD state and c_risk- an indicator for just entering the state, and d- time spent in state 1.
Further, we interacted these variables with the follow up time, using 4 periods. Therefore,
we modeled the effect of CHD as changing the hazard of dying by a factor, depending on
when the transition occurs and the the time spent with the disease. In this section, in order
to estimate the transition probabilities, we need to estimate the baseline hazard, which
presents problems when using time-varying covariates both computational and inferential,
as discussed in [20] (p.307).

To avoid this, we can adopt a different approach. This will present another use of the
multi-state models. Instead of assuming that the hazard changes by a factor, we can assume
that the effect of some factors is altered moving to another state, e.g. the effect of high blood
pressure is different before and after getting CHD. This corresponds to assuming different
coefficients for covariates before and after getting CHD. This approach is used by Klein at.
al. [20] for modeling the survival of cancer patients after bone marrow transplant.

We will use the following convention: for a variable v, we will denote v_nochd = vI[t < ul
and v_postchd = vI[t > u], where u is the time of the diagnoses of CHD, and u = oo for
individuals who never visit the CHD state.

The transition 0 — 1 was modeled in section 3.4.4. Next, we will present the results for
the transitions 0 — 2 and 1 — 2 based on the approach outlined above. The results are
presented in Table 3.5.

In both models, only the effect of diabetes after CHD is found to be significant. In both
models, the effect of systolic blood pressure ( variable spf) is different for people with CHD.
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Table 3.5: 3 state model, Females

Model for Females, transitions 1— > 2 and 0— > 2

_t g Std. Err. | z P> |z| | 95 % Conf. Interval
age_exam4 0699832 | .0039429 | 17.75 | 0.000 | .0622553 .077711
psm 3391367 | .0577513 | 5.87 | 0.000 | .2259463  .4523272

spf_nochd 0051733 | .0011716 | 4.42 | 0.000 | .002877 .0074695
spf_postchd | .0085612 | .0011441 | 7.48 | 0.000 | .0063188 .0108035
diab_postchd | 1.31061 204432 | 6.41 | 0.000 | .9099308 1.71129
Model for Males, transitions 1— > 2 and 0— > 2

t g Std. Err. | z P> |z| | 95 % Conf. Interval
age_exam4 0769317 | .003771 20.40 | 0.000 | .0695407 .0843228
psm 3844864 | .0658804 | 5.84 | 0.000 | .2553632 .5136096

spf_-nochd 0059262 | .0014694 | 4.03 | 0.000 | .0030462 .0088061
spf_postchd | .0129554 | .0014401 | 9.00 | 0.000 | .0101328 .015778

diab_postchd | 9668435 | .1929836 | 5.01 | 0.000 | .5886026  1.345084
chol -.0027605 | .0007303 | -3.78 | 0.000 |-.0041919 -.0013291

We want to address two issues before moving further. We have already discussed the problem
of using the covariate z for calculating the transition probabilities. However, the covariate z
was not found to be significant, after introducing the covariates in the Table 3.5. In a way,
that could be explained as the effect of z is now explained by the different effects of some of
the factors before and after the disease.

The second question that arises is whether the models in section 3.4.2 could have
benefited from introducing interaction terms with the covariate z. If the interaction term
zXdiab = zdiab is included in the models from Table 3.3, both diab and zXdiab are not
significant, so we have to choose one of them. We decided to use diab, since the number of
people with diabetes is very small.

The variable zX spf is not significant in males.

Next, the models from Tables 3.5 and 3.4 are used to calculate the transition probability

Pys(s, t) using equation 3.6.

3.5.2 Plots of the Transition Probabilities

Transition Probabilities can be used to estimate the prognosis of dying for an individual

with a particular set of covariates. In order to calculate them, we need to fix the covariates.
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For the continuous covariates, we considered the values age_exam4 = 51, chol = 241 and
spf = 150. The categorical variables have different values, as indicated on the plots. The
transition probabilities can also be used to compare the probability of dying, conditional on
whether they have developed CHD or not by a certain time. We give two examples with,
estimating Py (s, t) for s = 11 and s = 21 years. Figures 3.12 and 3.13 present the transition
probabilities Pya(s, t) for s = 11 and s = 21 years for a non-diabetic woman. The two graphs
are for a patient with and without CHD at the time s of the prediction. Similarly, figures

3.14 and 3.15 illustrate the same graphs for a diabetic woman.

Conditional probability of failure
predict. at 3 years, (age=51, diabetes=0 , male=0, psm=1, spf=150)

T
0 10 20 30 40
years of follow up

without CHD

with CHD

Figure 3.12: Transition Prob. to state 2, Females, non-diabetic

3.5.3 Transition Probabilities based on the Aalen model

Estimated hazard rates using the Aalen model can be easily combined to obtain transition

probabilities. For a given covariate vector X°, the cumulative hazard rates are estimated
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Conditional probability of failure
predict. at 13 years, (age=51, diabetes=0 , male=0, psm=1, spf=150)

15 20 25 30 35
years of follow up

with CHD without CHD

Figure 3.13: Transition Prob. to state 2, Females, non-diabetic

t
Aij (t, XO) = / X?] (S)ldBij (S)
0
As in the case of Aalen-Johansen estimator, presented in Chapter 2, the product integral

can be used to obtain estimates for the transition probabilities:

P(s, t) = [[(I + A(du)) (3.8)

Figures 3.16 and 3.17 present plots of the transition probabilities Py (0, ) for a non-
diabetic and diabetic woman. We observe similar curves as in figures 3.12 and 3.14. The
transition rate Pyy(0, t), as in formula 3.6, combine direct transitions to state 2, as well
as through state 1. The program Addreg was used to calculate the transition rates. The
program does not allow calculating the transitional probability, conditioning on the history
at time s < t. The plots estimate the individual prognosis for a female smoker, 51 years old

at baseline with total cholesterol level of 241 and systolic blood pressure of 150.
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Conditional probability of failure
predict. at 3 years, (age=51, diabetes=1, male=0, psm=1, spf=150)

T
0 10 20 30 40
years of follow up

without CHD

with CHD

Figure 3.14: Transition Prob. to state 2, Females, diabetic

The plots in figures 3.18 and 3.19 present the transition probabilities of moving to the
CHD state for a diabetic and non-diabetic woman. The other covariates are set as described
above. As we found earlier, initially this probability increases, and later on as the subjects
age, the probability decreases. The increase at the beginning is steeper for females with
diabetes. The models we developed in section 3.4.4 revealed that diabetes highly increased
the risk of CHD, especially for women.
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Conditional probability of failure
predict. at 13 years, (age=51, diabetes=1 , male=0, psm=1, spf=150)
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with CHD
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Figure 3.15: Transition Prob. to state 2, Females, diabetic
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Figure 3.16: Transition Probabilities, Py (0, ), Female, non-diabetic
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Figure 3.18: Transition Probabilities, Fy;(0,t), Female, non-diabetic
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Figure 3.19: Transition Probabilities, Fy;(0,t), Female, diabetic
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CHAPTER 4

Five-state Models

It is estimated that by year 2020 heart disease and stroke will become the leading cause of
death and disability world wide. In this chapter we will study the effect of CHD (Coronary
Heart Disease) and CVA (Cerebral Vascular Accident) individually and jointly on subsequent
mortality. We will be interested in whether the occurence of either disease makes it more
likely to develop the other, and whether the role of the covariates changes depending on the
current state. This is a more realistic examination of the role of chronic diseases in an aging
population and involves considering 5 states.

We use a multi-state model presented in Figure 4.1. This model has the following five

states:

e State 0 - The “healthy” state. All participants begin in this state, free of both CHD
and CVA.

State 1 - The CHD state. Participant developes CHD prior to developing CVA.

State 2 - The CVA state. Participant developes CVA prior to developing CHD.

State 3 - The state signifying that a participant has developed both CHD and CVA.

State 4 - The Death state.

We use the data set from the Framingham Heart Study that was introduced in Chapter
3. As before, the dataset contains information 3,201 individuals (1,681 females) with 2,722
deaths (1,402 in females). The five state model we consider allows 8 possible transitions
which we denote: 01,02,04,13,14,23,24,34. l.e., the transition ij occurs when a subject

moves from state ¢ to state j.
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Figure 4.1: Five state model

Table 4.1: Direct transition to each state

state | No of visits | Direct transitions to each state
0 |1 2 3 4

0 3,201 83 | 1,307 | 509 | 0 1,302

1 1,307 0 |240 0 191 | 876

2 509 0 [0 101 | 93 | 315

3 284 0 [0 0 55 | 229

4 2,722 0 |0 0 0 2,722

Table (4.1) presents the number of observed direct transitions. At the beginning of the
study, all subject were in state 0. In the table, the numbers representing the transition 2
are the number of the subjects who, once in that state, remained in the state. For example,
there were 55 subjects who were observed to have the transition 33. They are considered
censored in state 3 (had both CHD and CVA, but did not die by the end of the study).
There were 83 subjects (3%), for whom no transition from state 0 was observed.

The total number of people suffering from CVA is the sum of the counts for the direct
transitions 0 — 2 (509) and 1 — 3 (191), total of 700 (391 for women).

State 3 is visited only by individuals who experience both events-CHD and CVA. However
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subjects can move to state 3 from either state 1 or 2, depending which event occurs first. For
example, a disease progression for an individual who suffers first from a stroke, later develops
CHD and dies before the end of the study will be described by the multi-state model with
the transitions 02, 23 and 34. From the 1,307 individuals who visited state 1 (developed
CHD), 191 (15%) moved to state 3 (developed CVA). Similarly, from the 509 visits to state
2 (developed CVA), 93 (18%) later transitioned to state 3 (developed CHD).

4.1 Cerebrovascular accidents (CVA) and CHD

Cerebrovascular accident (CVA), commonly known as a stroke, is the death of brain tissue
due to the loss of blood flow to a particular area of the brain. Blood flow may be lost due
to a blockage or the rupture of a vessel. First, we want to compare CVA with CHD, later
we will examine how these two diseases affect mortality.

The mean age of CHD diagnoses are 65.5 years among men and 69.2 years among women.
Similarly, the mean age of CVA diagnoses are 70.1 years for men and 74.1 years for women.
In both diseases, the disease occurs, on average, about 4 years earlier among men than among
women. And, the average age of diagnosis for CVA happens later in life that the average
age of diagnosis of CHD in both genders. This can be seen in Table 4.1 as well, since from
the 284 subjects visited state 3, 191 (67%) transitioned from state 1, i.e. first experienced
CHD.

When we examined the occurrence of CHD alone in Chapter 3, we noted that a significant
number of the deaths after having CHD occurred within a day of the diagnosis and termed
these “sudden coronary deaths.” In Chapter 3 we also observed that the proportion of sudden
deaths was decreasing over the time-span of the Framingham study. A major difference
between the two diseases is in the distribution for the time between the occurrence of the
disease and death. Overall, from the 1,105 subjects who died after developing CHD, sudden
deaths account for 20% of the deaths . On the other hand, from the 544 individuals who died
after developing CVA, only 2% died within a day of the diagnosis. The difference between
the distributions may be seen by comparing the three quartiles (25%, 50%, and 75%) for the
time between the occurrence of disease and mortality for the two diseases. For CHD these
quartiles are 19, 1,761, and 4,453 days; while for CVA the quartiles are 67, 1,110, and 3,011
days.
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We discussed models for predicting the occurrence of CHD in Chapter 3. Here, we first
focus on building prognostic models for CVA. We will then examine whether developing one
disease (CVA or CHD) makes it more likely for a subject to develop the other.

The models for developing CVA for females and for males are presented in Table 4.2. To
arrive at this model, we began with a candidate set of variables, age, cholesterol, smoking
status, systolic blood pressure, and diabetes. We used likelihood ratio statistics to determine

which variables made a significant contribution to the model.

Table 4.2: Model for developing CVA (transition 02).

Model for Females, transitions to CVA
it 6] Std. Err. | z P> |z| | 95 % Conf. Interval
age | .0377681 | .0071433 | 5.29 | 0.000 | .0237674 .0517688
spf | .0130581 | .0020989 | 6.22 | 0.000 | .0089444 .0171718
Model for Males, transitions to C'VA
age | .0414167 | .0076317 | 5.43 | 0.000 | .0264588 .0563746
psm | 2904497 | .1351825 | 2.15 | 0.032 | .0254969 .5554024
spf |.0162012 | .0028081 | 5.77 | 0.000 | .0106973 .0217051
diab | .8578151 | .2674009 | 3.21 | 0.001 | .333719  1.381911

Different sets of covariates affect the rate men and women develop CVA. The only
covariates found to increase this rate in women are age and blood pressure. The model
for males includes diabetes as well as the smoking status. Both the effects of age and blood
pressure are found to be stronger in men.

It would be interesting to compare the models for developing CVA those for CHD,
presented in Chapter 3. The effects of age, and blood pressure are stronger in the CVA
models for both genders. Cholesterol was found to be significant predictor for developing
CHD, while it does not appear to play a role for CVA. Smoking is included in the CVA model
for males, while it was not included in neither model or CHD. Diabetes was very strongly
associated with the risk of CHD in women, and is not found as a significant covariate for
developing CVA in females. On the other hand, it seems to play more important role for
CVA (coefficient [y, = .86) than for CHD (coefficient (4 = .47) in the male group.

One question we are interested in, is whether having one disease affects the probability

that individuals will get the other disease. To examine this, we compare the hazard rates for
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CVA, before and after subjects have CHD. The model for CVA combines the transitions 02
and 13, i.e. having a stroke before CHD is diagnosed and after that. Let z_chd be a variable
which is an indicator for having CHD. In order to compare the rates males develop CVA
before and after CHD, we can include z_chd in our model. This is similar to the approach
we took in Chapter 3 and corresponds to the assumption that the hazard of getting CVA
increases by a factor after CHD is diagnosed. The covariate z_chd was not found to be
significant.

However, another way CHD may influence the transition to state 3 is by altering the
effect of some covariates. To investigate this, we add the interaction of the covariates from
Table 4.2 with z_chd. None of these variables were found to be significant. Therefore, we
concluded that the rate at which males are having strokes is the same before and after
CHD is diagnosed. Similarly, we compared the rates individuals are developing CHD, and
having CVA was not found to have any effect. The last finding is less important, since as

we discussed earlier, people usually develop CVA later in life.
4.2 Mortality models using the five-state model.

Next, we will use the 5 state model we described earlier to investigate the role of CVA and

CHD in subsequent mortality. There are four transitions to state 4:
e 04, a person may die without having developed CHD.
e 14, a person may die after having CHD, but without having developed CVA.
e 24 similarly a person may die after having CVA without having developed CHD.

e 34, a person may die after having developed both CHD and CVA.

The goal is to compare the hazard rate for these different transitions and to determine
which risk factors affect these hazard rates. As in Chapter 3, we will consider separate
models for males and females. First, we will compare different models for males, later we

will present a model for females.

4.2.1 Mortality models for men, Markov and non-Markov models

The simplest model we may assume is the Markov model that assumes that the probability

of transition at any time is a function only of time and of the present state. To model this
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assumption we can indicate the effect of being in states 1, 2 and 3 by including indicator
variables for being in these states in our model. The indicator variables are denoted z_chd,
z_cva and z_both for being in states the CHD only, the CVA only, and the CHD and CVA
state respectively.

We examine two possible departures from the Markov assumption. It is possible that the
hazard rate depends on the past history of the process or that the hazard depends on the
time spend in a particular state .

For example, we noted in Chapter 3, that mortality is very high after moving to the CHD
state. In our current model, there are two transitions possible after developing CHD, to state
3 if the person developes CVA or directly to state 4 if the person dies without developing
CVA. We compared the hazard rate from state 3 for the individuals, who were diagnosed
with CHD when moving to the state 3, i.e. those moving through the transitions 02, 23.

It may be conjectured that the hazard rate from state 3 depends on the time spent with
any disease (time spent in state 2 or 3). For example, it may be expected that developing
both diseases in a short interval of time is associated with higher mortality, compared to
those with a longer time between the diagnoses. There are other possible ways the hazard
may depend on the event history. For example, the hazard rate from state 3 to state 4 may
depend on the time spent with CHD or CVA or on which disease developed first.

Examining these possibilities, we found that the hazard rate from state 3 is higher for
individuals diagnosed with CVA first, but does not depend on the time spent in either state
1 or 2. In our analyses, we introduced the new covariate cvafirst, an indicator for having
CVA before CHD and found it was a significant determinant of the hazard for moving from
state 3 to state 4. This covariate affects only the transition 3 — 4 and makes the model
non-Markov, since the hazard depends on previous states as well as the current state. The
result is presented in Table 4.3.

The coefficient for cholesterol is very close to what we obtained for the models in Chapter
3. The same is true for the coefficients for age, systolic blood pressure, smoking status and
diabetes. The hazard of dying increases by a factor of 2.89 if only CHD is present and
by a factor of 2.27 if only CVA is diagnosed. If both are present, the hazard of dying
depends on which disease was diagnosed first. If CHD is first (more common), the hazard is
increased by a factor of exp(1.06 + .82 — .42) = 4.31. If CVA is first, the hazards increases
by exp(1.06 + .82 — .42+ .45) = 6.75. In both cases, state 3 has a mortality rate higher than
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Table 4.3: Mortality model , Males

Mortality model for Males

_t g Std. Err. | z P> |z| | 95 % Conf. Interval
age 0782033 | .0038345 | 20.39 | 0.000 | .0706877 .0857189
psm 3655678 | .0657504 | 5.56 | 0.000 | .2366994 .4944362
sbp .0075643 | .0014278 | 5.30 | 0.000 | .0047659 .0103628
diab 4199214 | 1472968 | 2.85 | 0.004 | .131225 7086179
chol -.0027346 | .0007382 | -3.70 | 0.000 |-.0041815 -.0012878
z_chd 1.061675 | .0656575 | 16.17 | 0.000 | .9329886  1.190361
z_cva 8215671 | .1049697 | 7.83 | 0.000 | .6158303 1.027304
z_both -.4229321 | .1604893 | -2.64 | 0.008 | -.7374854 -.1083788
cvafirst | 4588426 | .1824337 | 2.52 | 0.012 1012792 .816406

from the other states. This can be observed in Table (4.1) - from the 284 subjects (both
genders) visiting state 3, 229 (81%) failed.

The test of the proportionality assumption reveals that it is not satisfied for the indicator
variables for states 1, 2 and 3. In order to avoid this problem we can interact these variables
with time intervals, as we did in Chapter 3. Instead we will look for a different approach,

which we present in the models that follow.

4.2.2 Models for Males with different baseline hazard rates.

In order to develop a model which satisfies the proportionality assumption, we will allow
different hazard rates to have different baseline hazards. The effects of the covariates will
also be allowed to depend on the transition. This corresponds to modeling the hazard as

follows:

ais(t]X) = aly(t) exp(XiaBiy)
where i = 0,1,2,3 and afy(¢) is the baseline hazard for the transition i4.

This corresponds to a stratified Cox model, where the mortality rate from each state is
in a different strata. For example, the hazard rate for the transition 14 corresponds to strata
14.

In this approach, we cannot use indicator variables such as z_chd, since they are constant

for each strata. The increased mortality for moving to state 1 for example, would reflect in
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a higher basaline hazard rate from this state. A model using this approach is presented in

Table 4.4.

Table 4.4: Mortality model , Males

Model for Males, transitions to C'VA

t g Std. Err. | z P> |z| | 95 % Conf. Interval
age 0835918 | .0049735 | 16.81 | 0.000 | .0738439 .0933396
ageld -.0243457 | .007741 | -3.15 | 0.002 | -.0395177 -.0091737
psm 3589073 | .0664419 | 5.40 | 0.000 | .2286836 .489131

spf 0069044 | .0014519 | 4.76 | 0.000 | .0040586 .0097501
diabl4 9352022 | .2172404 | 4.30 | 0.000 | .5094189  1.360986
chol -.0028859 | .000741 | -3.89 | 0.000 |-.0043382 -.0014336
cvafirst | .3502635 | .1879008 | 1.86 | 0.062 | -.0180153 .7185423

The coefficients for smoking, cholesterol and blood pressure are found to be very close
to the ones from the model in Table 4.3. The effect of age reduces for the hazard rate 14.
The estimated coefficient for this hazard is (14(age) = .084 — .024 = .060. One explanation
for the reduction in the effect is due to the high rate of mortality after CHD in men. The
high proportion of deaths immediately after CHD increases mortality for the strata 14 and
reduces the role of age. In other words, for two men , given they both have developed
CHD, the hazard ratio for one year difference in age is exp(.06) = 1.06 or 6% higher. The
hazard ratio before they developed CHD (or generally in the same strata, different from 14)
is exp(.084) = 1.09 or 9% higher.

The high proportion of deaths immediately after CHD, we believe, makes the effect of the
covariate cvafirst almost significant (p-value from the Wald test is 0.06). Men who enter
state 3, having experienced CVA before, are those having CHD at the time. Their mortality
is higher compared to those, who developed CHD first, survived the initial hight mortality
rate and later developed CVA, at which time they enter state 3.

Another possible contribution to the covariate cvafirst is the later onset, on average, of
CVA compared to CHD. In other words, as we discussed at the beginning of Chapter 4, CVA
occurs on average 4 years later than CHD. Similarly, the average age for males, entering state
3 from state 2 is 73.5 years old (55 observations), versus average age of 71.5 years old (95

observations) for those having CHD first. We will examine the contribution of this difference
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later.

The coefficient for diabetes is significant only for the hazard rate 14. It is larger that the
one in Table 4.3.

The proportionality assumptions are satisfied for all variables, except for spf and agel4.
This is a finding we also observed in Chapter 3. The effect of blood pressure is reduced later
in the study and we can account for this allowing a different coefficient for the last 15 years
of the study, as we did in Chapter 3. There may be several reasons for this phenomena.
Blood pressure is measured at baseline, and in general blood pressure is known to vary more
than other covariates. Another reason is the use of effective medication for hypertension
made available in the second half of the study’s follow up. A third reason may be that the
effect generally reduces with age, however in this particular study, this effect is confounded
with the effect mentioned previously.

The effect of agel4 also reduces with time, and we believe has to do with the reduced rate
of mortality immediately after CHD. The higher the mortality rates are, the less important
the effect of age is, and therefore the larger in magnitude the coefficient (14(age) would be.

In Chapter 3, we considered coefficients for age and blood pressure to be piecewise
constants, allowing the effect to change with time. We adopted this approach, since our
goal was to compare hazard rates before and after CHD. The same approach can be applied
here, but would be more tedious, since we have 8 hazard rates instead of 3. We will use a
different approach which will be illustrated in the next section.

We want to look into the effect of the variable cvafirst more closely. Farlier we
hypothesized that some of the effect of the covariate may have to do with the fact that
on average CVA is developed 4 years later than CHD ( 2 years for males entering state 3).
We will consider a model only for the hazard rate asy(t|X), i.e., only for the transition 34.
This resembles the approach we will use in the next section. There we will use models,
where time is measured since entering the state. For this hazard rate, the reason we consider
time since entering the state, is the higher rate of mortality from state 3. From the 284
subjects who visited state 3, 229 died (81% in both genders, 84% for males). Therefore
the combination of both diseases appears to present a serious health burden, and the effect
of other covariates may be reduced and the time since entering the study might be most
important.

The covariate age is not used, rather age_state3 is used, which is the age at entering state
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3. As we discussed we want to detect if the effect of the covariate cvafirst has to do with

the later onset of CVA. The results are presented in Table (4.5).

Mortality models for Males, strata 34, age at entering state 3

Table 4.5: Mortality model from state 3 , Males

Model for Males, transitions to C'VA
t 1G] Std. Err. | z P> |z| | 95 % Conf. Interval
age_stated | .0559122 | .0123956 | 4.51 | 0.000 | .0316173 .0802071
spf .014985 | .004307 | 3.48 | 0.001 | .0065433 .0234266
cvafirst | 3467697 | .1859612 | 1.86 | 0.062 | -.0177075 .711247

We obtain practically the same coefficient for cva first as previously. Only 3 covariates are
found to be significant. The effect of age (age at entering state 3) is reduced. The coefficient
for blood pressure is higher than the one in Table 4.4. This suggests, that possibly a separate
coefficient (B34(spf) could be used in the model from Table 4.4. The effect of the covariate
spf34 was not found to be significant. The model considered above uses only a small portion
of the data set, 150 observations with 126 failures. The test of the proportionality assumption
indicates that it is satisfied (p-value of .75).

4.2.3 Mortality models for Males,time since entering the current

state

We will consider models, where time is measured since entering the state. The importance
of what constitutes time in the Cox model is related to the proportionality assumption. As
we discussed in Chapter 2, the Cox model assumes that the hazard rates for two subjects
are proportional, with a ratio depending on the covariates, but not on time. The hazards
are compared at the same time point. If we use time since entering the study, we compare
subjects at the same time after they entered the study. This has advantages, as we discussed
in Chapter 3, since the coefficients are adjusted for any cohort effects. Also in Chapter 3,
we briefly discussed that age has been used as a time scale [9]. If this approach is used, we
assume the hazards are proportional for two subjects at the same age, when the time since

they entered the study may be different.
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In the previous section, we discussed a model only for the hazard rate as4(t) and argued
that due to the severity of having both CVA and CHD this approach is justified. The
rationale for using time since “in state” is also advantageous for states 1 and 2 since there
are increased mortality initially, especially in state 1. For the transition 0 — 4 time since
entering the state or the study are equivalent.

A model using time since “in state” is presented in Table 4.6.

Table 4.6: Mortality model , Males

Model for Males, transitions to C'VA
it 6] Std. Err. | z P> |z| | 95 % Conf. Interval
age 0772989 | .0047785 | 16.18 | 0.000 | .0679333 .0866646
ageld -.0359369 | .007256 | -4.95 | 0.000 |-.0501584 -.0217155
psm 3001082 | .065809 | 4.56 | 0.000 | .1711249 .4290915
spf 0048826 | .0013979 | 3.49 | 0.000 | .0021428 .0076225
diabl4 5978204 | .2163211 | 2.76 | 0.006 | .1738389  1.021802
chol -.002613 | .0007358 | -3.55 | 0.000 |-.0040551 -.0011708
cvafirst | 3783978 | .1840152 | 2.06 | 0.040 | .0177346 .7390609

The coefficients for age are similar with the ones in Table 4.4. The coefficient for age
is slightly smaller, with a larger coefficient for agel4. The interpretation of the coefficients
here is different, however. When the time was considered since entering the study, the
coefficient can be interpreted as hazard ratio for one year difference in age. Here, we compare
subjects at equal amount of time after they entered state 1. Therefore the hazard ratio
exp(.77 — .35) = 1.04 suggests a 4% increase for a year difference at baseline (and not
difference of age). The coefficients for blood pressure, for entering the CVA state first and
for smoking are slightly reduced. The coefficient for diabetes is reduced by 57%. The test

of the proportionality assumption suggests it is satisfied for this model.

4.2.4 Mortality models for Females, semi-Markov model

In the previous sections, we compared different models for males and explained how we build
the final model, presented in Table 4.6. Similarly for women, we followed the same approach
and compared models with indicator variables for each state and stratified models with time

since entering the study as the time scale. We also found that the proportionality assumption
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was violated at least for one variable. The model we have chosen as our final model, as in
the case for males, uses time since entering the study. However, the role of the covariates is
different.

We will present two models for women, one only for the transition 34 and a final model
for all transitions. The results for a model only for the hazard 34 are presented in Table 4.7.
Unlike the model for men, the covariate cvafirst is not significant and cholesterol and
smoking are found to be significant. The model is based on 134 observations (103) failures,

time is measured since entering the study and age is measured at baseline.

Table 4.7: Mortality model from state 3 , Females

Model for Males, transitions to C'VA
t g Std. Err. | z P> |z| | 95 % Conf. Interval
age | .0572218 | .0136396 | 4.20 | 0.000 | .0304887 .0839549
diab | 1.388561 | .5292738 | 2.62 | 0.009 | .3512039 2.425919
psm | 7663314 | .2467098 | 3.11 | 0.002 | .2827892 1.249874

The results assuming different baseline hazards for each transition are presented in
Table 4.8. These models use time “in state.” as the time scale. As in the model for
the transition 34, the model does not require the covariate cva first. As we discussed earlier,
we believe that this covariate captures the effect of high mortality immediately after CHD,
which is more present for males, as we found in Chapter 3.

Covariates measuring time spent in states 2 or 3 does not affect the mortality rate from
state 3. Therefore, this is a Semi-Markov model, since the hazard depends on the current
state only, and time is measured since entering the state.

The covariate age04 is included only for the hazard rate from state 0, therefore the
coefficient By4(age)04 = .046 + .015 = .061. The effect of age is decreased after a subject is
diagnosed with either CVA or CHD. We found decreased effect of age only for the transition
from CHD to death in males.

The role of diabetes changes depending on the current state. It is not significant for
people without any disease, and has the highest effect for the hazard rate for asy(t).

The effect of smoking is also increased after entering state 3. The hazard ratio prior to

state 3 is exp(.267) = 1.30 and becomes exp(.267 + .425) = 2.00 after entering state 3.
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Cholesterol is found to affect only the hazard rate 14.

Table 4.8: Mortality model , Females

Model for Males, transitions to CVA

t g Std. Err. | z P> |z| | 95 % Conf. Interval
age 046486 | .0053413 | 8.70 | 0.000 | .0360172 .0569547
age04 | .0148638 | .0070911 | 2.10 | 0.036 | .0009655 .0287621
psm 2670933 | .0596187 | 4.48 | 0.000 | .1502428  .3839438
psm34 | 4258012 | .2248067 | 1.89 | 0.058 | -.0148118 .8664143
spf 0029533 | .001124 | 2.63 | 0.009 | .0007502 .0051564
diabl4 | 6133789 | .2216572 | 2.77 | 0.006 | .1789388  1.047819
diab24 | 1.057427 | 4634109 | 2.28 | 0.022 | .1491587  1.965696
diab34 | 1.220815 | .5329612 | 2.29 | 0.022 | .1762306  2.2654

choll4 | .0021616 | .0011919 | 1.81 | 0.070 | -.0001745 .0044977

4.2.5 Estimating the cumulative hazard function

The models for males and females presented in Tables 4.8 and 4.6 have different baseline
hazard rates depending on the transition rates. This makes it difficult to compare the actual
hazard rates, so we will compare the cumulative hazard rates for different transitions. To
illustrate this we consider a fixed set of values for the covariates are fixed as: total serum
cholesterol=220, diabetes=1, smoking status=1, systolic blood pressure=130, age at entering
the study= 52.

There are 4 cumulative hazard rates for females, each for the transition rates 04, 14, 24
and 34. The plotted functions represent the cumulative hazard, but evaluating the slope, we
can compare the actual hazard rates.

The largest cumulative hazard is for the transition 34. It corresponds to a very high
mortality rate shortly after entering state 3 and remains with highest slope. The cumulative
hazard from state 2 is the second highest. The hazard rate is also very high initially and
appears to have close to constant slope. A similar pattern is observed for the transition 14,
however it is lower than from the CVA state. It appears that CVA alone is more fatal than
CHD alone, for the specified set of covariates. The hazard from state 0 is very low at the

beginning, increases slowly, until about 30 years, at which time it increases in an exponential
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fashion. Since all subjects are initially at state 0, 30 years spent in the states, corresponds
to 82 years of age. All the comparison here, is solely from the given state, i.e. if a female
moves from state 1 to state 3, her hazard rate of dying is as the hazard rate from state 3,

starting from time = 0.
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10 20 30 40 50
years since entering the state
BCumHazF04 BCumHazF14
BCumHazF24 BCumHazF34

Figure 4.2: Cumulative hazards, Females

There are 5 cumulative hazard rates for males, the difference is that there are two hazard
rates from state 3, depending on the order of the diseases, as captured by the covariate
cvafirst. These two hazard rates are proportional, with a coefficient of proportionality
exp(Bevafirst) = 1.46 higher for the individuals with a CVA diagnoses first. The cumulative
hazards from state 1 and 2 are similar, with the curve for transition 14 being much smoother,
since there many more transitions. If the cumulative hazard rates are plotted only for the
initial period of time, we can observe that at the very beginning the hazard rate 14 is the
highest. The cumulative hazard rate from state 0 has a similar shape to the female plot.

The scale for the two plots is different, so any comparison has to take this into account.
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Figure 4.3: Cumulative hazards, Males
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CHAPTER 5

Summary and Future Directions

5.1 Summary and Conclusions

We have applied multi-state models to the development and progression of CVD. Our goal
was to develop prognostic functions predicting the probability of moving to a disease state
(CHD or CVA) and the probability for death before and after developing these diseases.
Another question, we examined is how different covariates affect the transition rates between
various states. In Chapter 1 we discussed the currently available prognostic models for CVD.
Chapter 2 outlined the necessary background from survival analysis and we introduced the
Cox and the Aalen models. In Chapter 3 we compared the hazard rates for death before and
after developing CHD. We used extended Markov models, since the mortality was increased
immediately after the diagnoses. We also modeled and discussed how this initial peak
changed with time. At this stage, we focused on evaluating the change of the mortality
after CHD.

We estimated the hazard rates to mortality, allowing the risk factors to play different roles
before and after the disease. We also modeled the hazard rate for developing CHD. The three
transition rates were then combined in order to estimate the transition probabilities at time
t, given the event history at time s < t. Transition probabilities can be used to evaluate

individual prognoses for failure for a fix set of covariates.

The Aalen model was also considered in Chapter 3. The three hazards were modeled
separately. The analysis from the Aalen model complemented the analysis from the Cox
model. The first model has the ability to summarize the effect of a covariate and the
Aalen model has the ability to show local changes (since the coefficients are estimated non-

parametrically). Similarly, as in the Cox models, we estimated the transition probabilities.
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This was done using the product integral introduced in Chapter 3.

Chapter 4 focuses on modeling mortality using a 5 state model, incorporating 2 more
states, one for CVA and one for having both CHD and CVA. We have modeled the risk
factors for developing CVA and whether CVA and CHD increase the likelihood of having
the other disease. We compared different models and found that a semi-Markov model with
a time scale, time since entering the study appears to explain the dynamics between the
disease states. We estimated and compared the cumulative hazard rates for women with a

fixed set of covariates.

The model for males was different, in the sense that the mortality rate from the state
with both diseases depends on the order of the diagnoses. It is higher for individuals who
developed CVA first, due to high mortality rate immediately after CHD. The models we
developed can be used to distinguish the risk factors which are most important for mortality
from each state.

The data set we used for this analysis is part of the Framingham Heart Study. The
recruitment of the cohort took place between 1948 and 1952 in the city of Framingham, MA.
Therefore any conclusion we derived from this data has potential limitations. First is that the
population of the city of Framingham consist of predominantly white people and therefore
the result may not apply to other races. Secondly, during the time the study took place
the treatment of CHD improved noticeably, as improved health care and treatments became
available. Also, we can assume the effect of some risk factors changed during this period.
One example is blood pressure, with the availability of effective drugs for hypertension after

the 1960’s.

5.2 Future work

We have considered models with one and two disease states. To have a more complete picture
of CVD progression, we can also include Congestive Heart Failure (CHF'), which is a common
disease after developing CHD. This however would increase the number of transitions, as
adding one disease state in Chapter 4 resulted in 5 transitions. We used the Aalen additive
model in Chapter 3 to compare with our results and to gain more insight into the role of
the covariates. The additive models are easily adaptable for large number of states, since

estimating the transition probabilities is obtained through the product formula, i.e. through
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matrix multiplication. We have observed in Chapter 3, that using coefficient functions for a
covariate has both advantages and disadvantages. An improvement in this direction could be
using a semi-parametric submodel of the Aalen additive model, where the set of covariates
is divided into two groups- the first group modeled non-parametrically (the coefficient for a
covariate v is a function (3, (t)) and the second group is modeled parametrically (the coefficient
is (3,, which corresponds to a constant effect of the covariate v). One such model was proposed
by McKeague and Sasieni, [11]. As a submodel of the Aalen model, this model allows one to
determine the variables whose effect varies with time. McKeague and Sasieni discussed the
question of how to choose parametric or non-parametric effects. Further, Gandy and Jensen
[29] developed formal tests for this model. Their results can be adjusted to detect particular
alternatives, e.g. against the Cox model.

Flowgraph models were discussed in Chapter 2. They can be very useful in modeling
multi-state models with a large number of states. Their use is limited for our application
since they presently do not allow the use of covariates. One possible direction is extending
these models to allow covariates, for example in the form of the accelerated time failure
models. The estimated baseline hazard rates in Chapter 4 suggest that even models with
constant baseline hazard (exponential density) or piecewise constant may be appropriate.

Another possible direction is to use multi-state models for recurrent events, for example
repeated Myocardial Infarction. Frailty models are particularly useful in a model where the
events are not independent. Bayesian analysis has been used in reliability and repair models.
We are considering applying these techniques for evaluating the prognoses for individuals

suffering multiple heart attacks.

78



APPENDIX A

Testing Proportionality Hazards assumptions

The Cox model assumes that the coefficients for all the covariates do not change with time.
Grambsch and Therneau (Therneau, 1994) suggested a test for this assumption based on
the scaled Shoenfeld residuals. The test is performed variable by variable and an overall test
can also be calculated. Let assume there are no tied failure times, and fix a covariate x,,
u = 1,...,p. Recall that the risk set R; is defined to be the set of all the subjects alive
at the time subject j fails. The Shoenfeld residual for the covariate X, for the subject j

Tuj = Xuj - E Xm'cui

1ER;

observed to fail is:

where ¢,; are weights
- exp(Xif3)
" ZkeR]- eXp<Xk:8)

Let us consider the coefficient for the covariate X, to depend on time and have the form:

Bu(t) = Bu + 7j9<t)

where 7; is a coefficient and g(t) is a specific function of time. Grambsch and Therneau

provide a method of scaling, to form ry; so that
E(r;) = 759(t)

This suggests that a plot of of rj; versus ¢; may be used to asses the proportional hazards
assumption. Formal test procedures are based on a test statistic with x?(1) and can be

combined for an overall test for all variables.
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APPENDIX B

(Partial) Likelihood Ratio Test

There are 3 main tests about the regression parameters 3 = [, ..., 3, fo a Cox model:
-Wald test,

-Score test and

-(Partial) Likelihood ratio test.

Often, we want to test a hypothesis of the form:

Hy : 81 = Bio

where the coefficient vector split into two vectors: B = (B1,B2). This is the case when
we want to compare a model (Ms) with covariates {Xg, X1, Xo} and a model (M;) with
covariates {Xo, X;}. The two models are nested, in the sense that the covariates for model
(M) are included in the model (M3). To compare the two models, we can split the coefficient
vector

B = (B1,B2) into B1 = B and B2 = (5o, £1)
and perform the test Hy : §; = 0. To test Hy we can use the Likelihood Ratio Test statistic:

X =2(LLy — LLy)

where LLy and LL; are the log of the maximum likelihoods calculated using models (M2)
and (M1). The test static Xy g has an asymptotic x?(1) distribution under Hy. In general,
if the models (M2) and (M1) differ in ¢ covariates, the test statistic X g has an asymptotic

X*(q)-
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