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ABSTRACT

Multi-state models are models for a process, which at any time occupies one of several

possible states. An example of a multi-state process is the life history of an individual, where

the states can be different diseases and an absorbing state-death. We applied these methods

to study cardiovascular diseases (CVD) and how they affect mortality. With the increasing

proportion of elderly people in most developed countries, the burden of CVD on the society

is increasing as well. It is estimated that by year 2020 heart disease and stroke will become

leading cause of death and disability world wide. The number of fatalities is projected to

increase to more than 20 million a year, and more than 24 million by year 2030. (Atlas of

Heart Disease and Stroke, WHO, September 2004)

Prognostic models have been widely used by clinicians to predict the outcomes for patients

free of CVD. These models have been developed mainly using risk functions for the binary

outcome (yes=CVD, no=no CVD) in logistic regression or for modelling the failure time

(time to death) in survival analysis. In both approaches, the focus is to determine the

effect of the covariates (fixed at baseline or time-varying) to mortality. As the population

ages and more people experience different diseases or events, such as heart attack or stroke,

which do irreversible damage to the heart/brain and change the life expectancy. It is also

expected, that factors like high blood pressure or diabetes may have different effects for a

person before and after a stroke. The question that we are interested is how to model the

event history for individuals who go through different disease states in their lifetime. The

goal is to include information for a set of covariates as well as the time and the type of

disease people encounter. We approach this problem from a multi-state prospective, where

the states describe the progression of the disease, for example healthy state, coronary heart

disease (CHD state) cerebral vascular accident (stroke) and death (absorbing state). The

xi



problem can be generally divide into steps:

The first step is to estimate how transition rates between various states depend on the

covariates. This will allow us to compare the role of covariates for different transitions.

The second step is to combine the estimated rates for a given set of covariates into appropriate

transition rates. This will allow us to calculate a survival probability for a given subject.

This can be used as a prognostic function at baseline, as well as at a later time, when

information for the event history of the subject is available.
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CHAPTER 1

Introduction

1.1 Brief history of prognostic models for CVD

Prognostic models for the Cardiovascular Disease (CVD) have been used widely. The focus

has been on modeling time to death or time to the development of the disease. The standard

approach has been to include possibly other diseases as covariates, recorded at baseline

along with some prognostic factors (such as blood pressure, cholesterol). However, with the

advances in medicine and health care in the second half of the 20th century, life expectancy

is continually increasing with a large proportion of the population in their 80’s and 90’s.

Many of the elderly people experience some form of Cardiovascular Disease and often live

with it for a substantial amount of time. These diseases often leave people with irreplaceable

damage to the heart (myocardial infarction) or to the brain (CVA). This phenomena suggests

modeling the life history of the individuals including more states, such as CHD or CVA. First

I will review the methods that have been used for building prognostic models. I will briefly

outline the logistic regression, the Cox proportional hazards model, and some parametric

models, all used in the context of the two state model, i.e. we consider state 0 - when people

are alive and we follow them till failure (state 1) or censoring.

1.1.1 Logistic Regression

In logistic regression, we are interested in modeling the probability that a subject with given

set of covariates will fail within a specified amount of time. We are not interested of the

exact time of failure, only in the outcome at the end of the follow up period.

Suppose we have followed n individuals for a period of time t and recorded their covariates

at the beginning of the study and whether they have failed by the end of the study. The

response variable Y is binary - takes the value 1 if the subject has failed , and 0 if he/she
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hasn’t failed.

Let us denote

X = (1, x1, . . . , xp) - the covariate vector and

π(X) = P (Y = 1|X) = 1−P (Y = 0|X) - the probability of failure by the end of the follow

up.

The logistic regression model has the form:

logit(π(X)) = log

(
π(X)

1− π(X)

)
= Xβ (1.1)

where β = (β0, β1, . . . , βp) are the regression coefficients that require estimation.

The interpretation for the coefficients is given in terms of the odds ratio. Let us assume

diabetes is one of the variables recorded at the beginning of the study, with the value 1

for those with diabetes and 0 otherwise. Then the odds ratio for two imaginary subjects,

one with diabetes and the other without ( having all the other covariates the same ) is

exp(βdiab). The interpretation of the regression coefficient βj for a continuous variable Xj is

similar, comparing the odds ratio for a unit increase in Xj.

The regression coefficients are estimated to maximize the likelihood. Since the observa-

tions are assumed to be independent, the likelihood function is the product:

l(β) =
n∏
i=1

π(X i)
Yi(1− π(X i))

1−Yi (1.2)

It is easier to maximize the log likelihood function

L(β) = log(l(β)) =
n∑
i=1

Yilog(π(X i)) + (1− Yi)log(1− π(X i)) (1.3)

To find the vector β that maximizes L(β), the first derivatives with respect to βi i = 1, . . . , p

are set to zero, obtaining the so called likelihood or score equations:

n∑
i=1

Xi(Yi − π(Xi)) = 0 (1.4)

which is a vector equation with (p+ 1) elements. Using the fact that the first coordinate in

every vector Xi is one, we obtain the equality

n∑
i=1

Yi =
n∑
i=1

π(Xi) (1.5)

2



which indicates that the number of people expected to fail is the same as the number of people

observed to fail. There is no closed form for the coefficients maximizing the likelihood and

numerical methods such as Newton-Raphson can be used.

Logistic regression has been widely used in prognostic models [1], [2]. However, this approach

has the limitations that all subjects are observed over the same period of time and it estimates

the survival function only at one specified time.

1.1.2 Cox Proportional Hazards Model

The Cox model [3] assumes the hazard rate as follows:

α(t|X) = α0(t)exp(Xβ) (1.6)

where β is a vector of coefficients to be estimated and X is a vector with covariates. If we

compare the hazards ratio for subjects i and j with covariates vectors Xi and Xj , we have:

h(t|Xi)

h(t|Xj)
= exp(β′(Xi −Xj))

which does not depend on time. Because of this, the Cox model is often called the

proportional hazards model.

If the covariate vectors Xi and Xj differ in only one variable, say subject i is 55 year old and

subject j is 54 then the hazard ratio is exp(βage). The exponentiated individual coefficients

can be interpreted as the hazards ratio for a unit increase in the corresponding covariate.

The baseline hazard α0(t) only depends on time t and can vary freely -hence the Cox model

is semi-parametric. The strength of the Cox model is the ability to estimate the coefficients

β without specifying the baseline hazard α0(t). This is achieved by maximizing the partial

likelihood, which has contributions for each death time.

Let t1, t2, . . . tD denote the ordered event times. Let us assume there are no tied death times

and the censoring is independent of the failure times. Let X(j) be the covariate vector for

the subject failing at time tj. The partial likelihood is defined:

L(β) =
D∏
i=1

exp(X(i)β)∑
j∈R(ti)

exp(Xjβ)

where R(tj) is the risk set at time tj -the set of all individuals who are still under observation

at a time just prior to tj. The partial likelihood depends only on the order of the failure

3



times, not on the exact times.

Wilson et. al. [4] used the Cox proportional hazards model for the probability of developing

CHD using data from the Framingham Study. The covariates included in the model are age,

systolic blood pressure, cigarette use, diabetes, total cholesterol (or LDL cholesterol) and

HDL cholesterol. The continuous covariates are split into intervals and a model with only

categorical variable is considered. The discriminatory ability of the model is compared to

proportional hazards model and accelerated failure model with continuous covariates using

the ROC curve and the corresponding c statistics. The performance of these models is very

similar.

1.1.3 Parametric models

In general, parametric models are written in two different ways:

• proportional hazards models- specifying the hazard rate

• accelerated failure-time (AFT) models - specifying directly the failure time T .

1.1.4 Accelerated Failure Time models

In this approach, the failure time T is modeled directly:

ln(Tj) = Xjβ + ln(τj)

where τj = exp(−Xjβ)Tj is a random variable with a distribution assumed to be known.

The quantity exp(−Xjβ) is called the acceleration parameter. The role for the acceleration

parameter can be viewed through the survival function.

Let us denote S0(t) the survival function of a subject with a covariate vector X = 0. Then

we have

S(t|X) = S0(exp(−Xjβ)t)

In other words, the probability of survival after time t for a subject with covariates X

is equivalent to the probability of survival past time exp(−Xjβ)t for a subject with all

covariate values equal to zero. Therefore, the interpretation of the acceleration parameter is

the following:

4



• if exp(−Xjβ) = 1, then time passes at its normal rate

• if exp(−Xjβ) > 1, then time is accelerated and failure is expected to occur sooner

• if exp(−Xjβ) < 1, then time passes more slowly and failure is expected to occur later.

Generally, the two approaches described above are different ways to model the dependence on

the covariates for the survival function. However, if the Weibull distribution is assumed for

the random variable τj = exp(−Xjβ)Tj, then it can be shown [5] that the regression variables

act multiplicatively on the hazard function. Therefore, using the Weibull distribution, both

approaches lead to the same model and this is the only distribution with this property.

Anderson [6], [7] generalizes the AFT models using the Weibull distribution. To illustrate

his approach we need to point out two observations. First is an alternative definition for the

2 parameter Weibull distribution:

A random variable T has Weibull distribution with a location parameter µ and scale

parameter σ if.

U =
log(T )− µ

σ
(1.7)

has an extreme value distribution with cdf FU(u) = 1− exp(− exp(u)).

The standard definition of the Weibull distribution [5] has hazard function :

α(t) = λγ(λt)(γ−1)

The two definitions specify the same distribution with the correspondence:

γ = 1
σ

and λ = exp(−µ).

The advantage of the definition through the parameters µ and σ is that the standard AFT

model, with Weibull distribution as a baseline hazard, is equivalent to modeling the location

parameter µ as a function of the covariates:

µ(X) = Xβ and σ considered a constant.

The second observation, is that the property of the proportional hazards model 1.1.2, can

be expressed using the logarithm of the cumulative hazard function, defined at the beginning

of Chapter 2:

log(A(t|Xi))− log(A(t|Xj)) = β′(Xi −Xj)

in other words, the difference of the log cumulative hazards is constant with time.

5



In the AFT Weibull model, µ = µ(X) and the logarithm of the cumulative baseline

hazard is A(t|µ, σ):

log(A(t|µ, σ)) ≡ log(−log(Pr {T ≥ t})) =
log(t)− µ

σ

where the first equality is a general formula (which will be outlined in Chapter 2) and the

second equality uses the definition of the Weibull distribution 1.7. If σ is treated constant, as

in the general AFT Weibull model, the difference of the log cumulative hazards for subjects

i and j with covariates Xi and Xj is a constant:

log(A(t|Xi))− log(A(t|Xj)) =
µ(Xi)− µ(Xj)

σ

and it is a proportional hazards model.

Anderson suggests using models, where σ is also a function of the covariates. He compares

the following models, assuming underlying Weibull distributions as in (1.7) :

• Model 1: µ = Xβ , log(σ) = θ0

• Model 2: µ = Xβ , log(σ) = θ0 + θ1µ

• Model 3a: µ = Xβ , log(σ) = θ0 + θ1µ+ θ2µ
2

• Model 3b: µ = Xβ , log(σ) = Xγ

Model 1 is the standard AFT Weibull model. Model 2 is the final model, where different

models are compared using the Likelihood Ratio Test. The parameter θ1 indicates how

fast the logarithm of the cumulative hazard converges or diverges for two values of µ. The

covariates used in the models are measured at baseline: logarithm of age, logarithm of

systolic blood pressure, logarithm of cholesterol, Metropolitan relative weight (Metropolitan

Life Insurance Company Tables) and an indicator for smoking. The use of logarithms resulted

in improved fit. The final model was used to predict the probability of developing CHD for

a given set of covariates.

1.1.5 Parametric Proportional Hazards models

In the models in this category, the hazard is specified as in the Cox model,

λ(t|Xj) = λ0(t) exp(Xjβ)

6



where Xj are the covariate vector for subject j, and β is the vector for the regression

coefficients. The difference from the Cox model is that parametric assumptions are made

about the baseline hazard function. Conroy et al. [8] used risk functions based on a Weibull

proportional hazards model, stratified on cohort and gender. The SCORE (Systematic

Coronary Risk Evaluation) project uses data from 12 European cohort studies and the goal

is to measure the risk of fatal cardiovascular disease. The approach of measuring the risk of

fatal CVD disease is in contrast to most other studies, where the end point is fatal or non-

fatal CVD disease. The estimation of the risk function is split into two parts-the risk of fatal

CHD disease and the risk of fatal non -CHD CVD disease. One reason for this distinction

is the well observed regional differences in Europe- countries with high CVD risk, such as

Denmark, Finland and Norway and low CVD risk regions - Belgium, Italy and Spain. In

the countries with low total CVD mortality, the proportion of the CHD deaths to the total

CVD deaths is also low. The model uses strata for cohorts and gender, allowing the baseline

hazards to vary, but keeping the coefficients for the risk factors the same. In other words,

the model assumes that the effect of the covariates is the same for all individuals. Another

notable difference from other studies is the use of age as a time scale. This idea was first

used by Korn et al. [9], where they have a discussion for the use of age as a time scale for

certain (e.g. chronic) diseases. The covariates considered in the SCORE study are smoking

status, systolic blood pressure and cholesterol (or cholesterol to HDL ratio). Information for

diabetes was not available for all the cohorts and was omitted. Two models were considered,

one using total cholesterol, the other the ratio of total cholesterol and HDL with very similar

results. The risk estimations are displayed graphically in risk charts for the use by clinicians.

Non-parametric and semiparametric methods compare subjects at the time subjects fail.

Parametric models on the other hand, calculate probabilities for every interval, for every

subject. The likelihood function, in both of the parametric models is the product of the

individual contributions for each subject, for the time they were under observation. If subject

j was followed in the interval (t0j tj], his contribution to the likelihood is :

Lj(Θ) =
S(tj|Xj ,Θ)1−djf(tj|Xj ,Θ)dj

S(t0j|Xj ,Θ)

where dj is an indicator for censoring (dj = 0 if censored, dj = 1 if failure), Θ is the vector

of parameters used in the model and f(t|X,Θ) is the density function of the failure time T .

Multi-state models describe the life history of individuals and are helpful in studying the

7



occurrence of diseases changing the risk of death. They can be used for modeling recurring

events, although in this dissertation we focus on the first occurrence of diseases. Most

of the studies for CVD developed risk functions based on end points of fatal and non-

fatal CVD. There are a number of problems using non-fatal end points, one of which is

that CVD is a combination of different diagnosis with different severity, as indicated in

[8]. However, using CVD with fatal end points only, will inevitably include the burden of

the non-fatal CVD events occurring earlier. Peeters [10] estimated using Multi-state life

tables that at age 50 men have 6.3 (5.7 for women) years spent with CVD. We believe, a

more complete picture would be to model the disease as a factor to mortality, adjusting for

covariates. Modeling CVD diseases as states, we believe models a natural process of aging.

De Becker et al [11], listed 5 observations on which the prevention of CVD is based in the

SCORE project. The second observation indicates that “the underlying pathology is usually

artherosclerosis, which develops insidiously over many years”. Multi-state models can also

be used for making estimates of individual prognosis in epidemiological or clinical studies,

combining the estimated prognosis for developing a disease and the mortality afterwords.
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CHAPTER 2

Background

2.1 Background on Survival Analysis

Survival analysis is an area which focuses on the distribution of a failure time T . The

probability distribution of T can be specified in different ways: with the probability density

function (pdf), the survival function or the hazard function. Each one determines the rest.

The survival function is defined as the probability that T exceeds a value t in its range:

S(t) = P (T > t). The distribution of the the time to failure T can be discrete, continuous

and mixed, and we will briefly outline each of these cases.

If T is a discrete random variable taking values t1 < t2, . . . with associated probability

function

f(ti) = P (T = ti), i = 1, 2, . . . ,

the hazard at ti is defined as the conditional probability of failure at ti given that the

individual has survived to ti:

αi = P (T = ti|T ≥ ti) =
f(ti)

S(ti)
, i = 1, 2, . . . ,

and the cumulative hazard is defined as

A(t) =
∑
tj≤t

αj

The relation between the survival function and the hazard function is given with the formula

S(t) =
∏
tj≤t

(1− αj)

If T is a continuous random variable, the probability density function of t is defined as

f(t) = −dS(t)/dt and the intensity (hazard) function is defined as

α(t) = lim
∆t→0

(∆t)−1P (t ≤ T < t+ ∆t|T ≥ t) (2.1)
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It is the instantaneous rate at which failures occur for individuals that are surviving at time

t. We have the following relation

S(t) = exp

[
−
∫ t

0

α(s)ds

]
= exp [−A(t)] (2.2)

where A(t) =
∫ t

0
α(s)ds is called the cumulative hazard function.

We will derive another formula for P [T ∈ [t, t+dt) |T ≥ t] and compare with the one above:

P [T ∈ [t, t+ dt) |T ≥ t] = {S(t−)− S(t+ dt)}/S(t−)

which in the case of continuous failure time T , using (2.2), can be written as

1− exp{−(A(t+ dt)− A(t))} ≈ dA(t)

The last approximation is based on Taylor’s formula expansion 1− e−x ≈ x, for small values

of x. More generally, the distribution of T may have both discrete and continuous parts.

The cumulative hazard function is then:

A(t) =
∑
tj≤t

αj +

∫ t

0

αc(s)ds

We can specify the hazard of failure over the infinitesimal interval [t, t+ dt] as

dA(t) = A(t+ dt)− A(t−)

= P [T ∈ [t, t+ dt) |T ≥ t]

=

{
αi t = ti, i = 1, 2, . . .

αc(t)dt otherwise

The survival function is given with the formula:

S(t) = exp

{
−
∫ t

0

αc(u)du

}∏
tj≤t

(1− αj)

There is a general formula for the survivor function that holds for discrete, continuous, or

mixed cases

S(t) = Πt
0(1− dA(s))

where the product integral on the right hand side will be defined later in section 2.4.2.
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2.2 Specifying the failure time distribution

2.2.1 Kaplan-Meier formula

In the case of a homogeneous population (when no covariates are considered), we have

different ways to specify the distribution. A non-parametric estimate for the survival function

is given by the Kaplan-Meier formula:

S(t) =
∏
j|tj≤t

nj − dj
nj

where t1 < t2 < . . . < tk represent the observed failure times, nj is the number of people at

risk and dj is the number of deaths at time tj. Later we will outline some parametric and

non-parametric methods for a homogeneous population in the context of multi-state models.

We have already discussed methods for specifying the distribution of a falure time adjusting

for covariates. The Cox proportional hazards model and the accelerated failure time model

were discussed in Chapter 1 and present a semiparametric and a parametric approach for

modeling survival data. Here, we will add another (non-parametric) method.

2.2.2 Aalen Additive hazard model

This model originates from the work of Aalen [12] and is an alternative to the semiparametric

multiplicative hazard model. We have, in the case of the two-state mortality model,

α(t,X) = β0(t) + β1(t)X1(t) + . . .+ βk(t)Xk(t),

where X(t) = [X1(t), . . . , Xk(t)] is a vector of possibly time dependent covariates. Use of

this model for multi-state problems is presented in Aalen [13] and will be discussed later.

The two main differences from the multiplicative hazards model are:

- the hazard of a failure time is modeled as a linear combination of the covariates

- a non-parametric approach is adopted, i.e. the coefficients βi(t), i = 1, . . . , k are allowed

to vary freely ( they are assumed constants in the proportional hazards Cox model).

As outlined by McKeague and Sasieni [14] the additive form can be interpreted loosely

in terms of unobserved competing risks, since the hazard function for the minimum of

independent random variables is the sum of the hazards for the individual variables.
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2.3 Stochastic models

Multi-state processes decribe the life history of individuals. At any time the process occupies

one state. We can view the classical survival analysis as a process with two states, alive (state

0) and dead (state 1). We will refer to this model as the mortality model. Next, we will

illustrate the competing risk model.

The competing risk model

Figure 2.1: Competing Risk Model

Figure 2.1 presents the competing risk model. In this model, subjects are alive in state 0

and the other states are different causes of death. These models have been widely used and

there is an extensive literature on them (for a review: Crowder [15]).

Denote k the number of competing causes of death. We have k possible transitions, each

with a specific hazard rate α0j(t), j = 1, . . . , k. Denote P0j(s, t) the probability that the

process is in state 0 at time s and in state j at time t, j = 0, 1, . . . , k. The hazard rates are

12



defined as:

α0j(t) = lim
∆t→0

(∆t)−1P0j(t, t+ ∆t)

There are two types of transition probabilities, the survival function:

P00(0, t) = S(t) = P (T > t) = exp

(
−
∫ t

0

k∑
h=1

αh(u)d(u)

)

and the cause specific cumulative incidence functions:

P0h(0, t) =

∫ t

0

S(u)αh(u)d(u), h = 1, . . . , k

Next, we will introduce the notation for a general multi-state model.

2.3.1 General notations and definitions

A multi-state process is a stochastic process (X(t), t ∈ Ω) with a finite state space S =

1, . . . , p and with right continuous piecewise constant sample paths, with limits to the left.

Usually the set Ω = [0, τ ] or [0, τ). Informally, information up to time t consists of all

the states the process has visited and the times of the transitions (events). This is made

mathematically precise as a σ - algebra, Ft, called also history at time t, consisting of the

development of the process in the interval [0, t]. As the time increases, Ft is an increasing

sequence of σ - algebras, a so called filtration. The transition probabilities are defined as:

Phj(s, t) = P (X(t) = j|X(s) = h, Fs−) for h, j ∈ S, s, t ∈ Ω, s ≤ t

Usually, the multi-state model is defined using its transition (hazard) rates defined as:

αhj(t) = lim
∆t→0

(∆t)−1P (X(t+ ∆t) = j|X(t) = h, Ft−)

If αhj(t) only depends on the history via the state h = X(t), the process is called a Markov

process. The process is memoryless, in the sense that only the current state is relevant in

specifying the transition rates. The rates themselves are allowed to depend on the time t

since the beginning of the study. The Markov property is often expressed in the following

form: the past and the future of the process are conditionally independent, given the present.

In some situations however, there may be dependence on the time since entry to a state. In

these cases, we can allow the hazard rate to depend on the time d spent in the current state:

αhj(t, d) = lim
∆t→0

(∆t)−1P (X(t+ ∆t) = j|X(t) = h, stateh entered at time t− d)
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This model is called the extended Markov model, or the modulated Markov model.

If the current state and the time spent in it determine the hazard rate, we have a semi-

Markov process, and can write, αhj(t, d) = αhj(d). Another way to express this property is:

conditional on the sequence of states, the transition times are independent.

A state h ∈ S is called absorbing if for all t ∈ Ω, j ∈ S, j 6= h, αhj(t) = 0; otherwise h is

transient. In our applications there is one absorbing state - death, and subjects are followed

until they reach this state, or they are censored in any other state. Next we will describe

the illness-death model, where we can consider different types of dependence.

2.3.2 Counting Processes, Likelihood calculations

In this section we will introduce the counting process formulation for time to failure analysis.

This approach was introduced in the 1970’s by Aalen and has been widely used since then.

Assume that the process Xi(t) is observed over the interval [0, τi], where τi is fixed. Random

right censoring and left truncation are considered later. All the information about the process

can be derived from the initial state X0 and the functions

N i
hj(t) = (# direct transitionsh −→ j in [0, t] for subject i),

where h, j ∈ S. These functions are right continuous and piecewise constant, with jumps at

the times of transitions from state h to state j.

For the process i, we will observe N i
hj(τi) such transitions:

0 < T i1hj < · · · < T
iN i
hj

hj ≤ τi,

Denote

Nhj(t) =
n∑
i=1

N i
hj(t) and Y i

h(t) = I{Xi(t−) = h}

Note that Y i
h(t) is an indicator for subject i being in state h, just prior to time t.

The notation Xi(t−) refers to the limit from the left. We have assumed X(t) to be right

continuous, with limits from the left. Summing over all individuals, we have (assuming state

h is not an absorbing state)

Yh(t) =
n∑
i=1

Y i
h(t) ( # of individuals ‘at risk’ in state h in time t− )
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Note that for t > τi, Nhj(t) = Nhj(τi) and Yh(t) = 0, so these functions can be considered

defined on (0, ∞). The likelihood for the observed process is:

n∏
i=1

∏
h6=j

exp

(
−
∫ τi

0

αihj(t)Y
i
h(t)dt

)
N i
hj(τi)∏
k=1

αihj(T
ik
hj)

 (2.3)

This likelihood is somewhat different than the one usually seen in Survival analysis books.

If the ith subject is censored in state h, and this is his first visit to the state, then Nhj is

zero for all states j 6= h, and the last term in (2.3) would be missing. In the models we will

consider, there will be at most one possible transition h → j, in fact there can be only one

visit to every state (e.g. illness-death model).

The derivation above was obtained for observation of subject i up to time τi, which is assumed

fixed. This is the case with the data set we have - The Framingham Heart Study. In general,

the formulas can be extended to two cases of incomplete observation: delayed entry-where

individual i enters at some time Vi; and right censoring, where subject i is lost for follow up

at time Ui. Both Vi and Ui may be random, but can depend either on the previous history of

the process or independent of it. The only correction in the above formulas is the definition

of the “at risk” indicator, now: Y i
h(t) = I{Xi(t−) = h, Vi < t ≤ Ui}

2.4 Two examples

Next, we will outline two examples of multi-state models: one is a parametric, the other is

non-parametric.

2.4.1 Parametric Hazard rates: constant and piecewise constant

In this model we will assume the hazard for going from state h to state j is constant and the

same for all subjects - αihj(t) = αhj. Let Nhj(T ) = Nhj, where T = max(τ1, . . . , τn). Then

the likelihood has the form: ∏
h

∏
h6=j

α
Nhj
hj exp (−αhjShj)

where we assume 00 = 1 and

Sh =
∑
i

∫ T

0

Y i
h(t)dt
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The maximum likelihood estimates of αhj are:

α̂hj =
Nhj

Sh
,which is the classical occurrence/exposure rate.

An easy generalization is to allow piecewise constant hazard rates: we assume the hazards

αlhj(t) are constant over the interval (tl−1, tl]. Similarly the maximum likelihood estimates

are: α̂
(l)
hj =

N
(l)
hj

S
(l)
h

where N
(l)
hj = Nhj(tl)−Nhj(tl−1) and

Sh =
∑
i

∫ tl

tl−1

Y i
h(t)dt

Asymptotic inference can be obtained from the observed information:

−D2log L =
N

(l)
hj

(α
(l)
hj )

2

from which we can obtain

V ar(α̂
(l)
hj ) ∼

(α
(l)
hj )

2

N
(l)
hj

∼
N

(l)
hj

(S
(l)
h )2

2.4.2 Freely varying (non-parametric) hazard rates

Assume that the transition rates are the same for all subjects, but vary freely with time

αihj(t) = αhj(t). We assume the individuals come from a homogeneous population and there

are no covariates. Instead of estimating the hazard rates, we can estimate the cumulative

hazard:

Ahj(t) =

∫ t

0

αhj(u)du

using the Nelson-Aalen estimator.

Âhj(t) =

∫ t

0

Jh(u)

Yh(u)
dNhj(u) =

∑
i

∑
k :0<T ikhj<t

1

Yh(T ikhj)
(2.4)

where Jh(u) = I {Yh(u) > 0}, with variance estimators:

σ̂2 (Âhj(t)) =

∫ t

0

Jh(u)

Yh(u)2
dNhj(u) =

∑
i

∑
k :0<T ikhj<t

1

Yh(T ikhj)
2

The asymptotic properties of these estimators are derived using techniques based on

stochastic integrals and martingales. The matrix of the transition probabilities P (s, t) =
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(Phj(s, t)) can be calculated as a product integral, which is explained in the next section.

Formula ( 2.6 ) can be used to obtain an estimator for P̂ (s, t) by plugging the matrix of the

Nelson-Aalen estimators (Âhj(t)) into the formula

P̂ (s, t) =
t∏
s

(I + Â(du)) (2.5)

This estimator is known as the Aalen-Johansen estimator [16], and for the case of the two-

state mortality model , P00(0, t) reduces to the Kaplan-Meier estimator, since Â00(t) is a

scalar step function

Â00(t) = −Â01(t) = −
∑
tj≤t

dj
rj

and

Ŝ(t) =
∏
tj≤t

(
1− dj

rj

)
where rj is the number of people at risk just before time tj, and dj denotes the number of

observed failures at tj.

The product integral

Multi-state models are usually defined through their intensity functions. Often, the interest

is in estimating transition probabilities The matrix of the transition probabilities P (s, t) =

(Phj(s, t)) and can be obtained using a (matrix) product integral. Let I be an identity

matrix (pxp) and G be a matrix valued function. The product integral is defined as:

Πt
0(I +G(ds)) = lim

max |tν−tν−1|→0
Π(I +G(tν)−G(tν−1))

where 0 = t0 < t1 < . . . tn = t is a partition of [0, t]

In the case of G - scalar and a continuous function, we have:

t∏
0

(1 +G(ds)) = eG(t)−G(0)

If G is a scalar step function with jumps d1, . . . , dK in the interval [0, t], we have

t∏
0

(1 +G(ds)) =
K∏
k=1

(1 + dk)
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Define αhh(t) = −
∑

h6=j αhj(t) and the intensity matrix A(t) = (Ahj(t)), where

Ahj(t) =
∫ t

0
αhj(u)du. The matrix of the transition probabilities P (s, t) = (Phj(s, t)) is

given by

P (s, t) =
t∏
s

(I +A(du)) (2.6)

As an illustration of this formula, consider the case of the exponential distribution for the

mortality model, where state 0 is alive, and state 1 is dead. The hazard α01 = λ, α00 = −λ
and the other two intensities (α10, α11) are zero. Thus, A00(t) = −λt and P00(0, t) =∏t

0(I + A00(du)) = exp(A00(t)) = exp(−λt), since A00(t) is a continuous scalar function.

Note that a shorter way to calculate P00 is P00(0, t) = S(t) = P (T > t) = e(−λt), for the

exponential function.

2.5 Parametric models - Flowgraph model

I will consider the flowgraph model as an illustration for the parametric approach to multi-

state models.

2.5.1 Introduction

The main features of the Flowgraph models are:

- parametric assumptions for the waiting time in each state.

- primarily used for data analysis of semi-Markov processes.

- they model the total time to failure, however the hazard can be estimated as well

The flowgraph model, in the form used in the literature, does not involve covariates. On the

other hand, it does not assume the proportionality of the hazards as in the Cox model and

can be used for multi-state models with very complicated state structures. Flowgraph models

have been used for modeling survival data for cancer patients and in reliability. They require

the use of a symbolic algebra package, such as Maple, because of the use of approximation

techniques (saddlepoint approximation) which are very tedious. We will illustrate the use of

flowgraph models for the illness-death model for a fairly homogeneous population- males 50

to 62 years old at baseline of the Framingham Heart Study. As described above, state 0 is

healthy state, state 1 is CHD, and state 2 is death.
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2.5.2 Censored histograms

Censored histograms are used as a rough guide for choosing a parametric model for a given

transition.

Let Yij denote the waiting time for the transition from state i to state j. We assume the Yij

are independent of each other. This corresponds to a Semi-Markov process. Recall that for

Semi-Markov processes, conditional on the sequence of states, the individual waiting times

are independent. The Flowgraph method assumes parametric distributions for each waiting

time. The choice of the distributions is made using so called censored histograms, which are

defined below.

Focusing on each waiting time separately, we can estimate P (Yij > t) using a Kaplan - Meier

estimator. If we are interested in the waiting time Y01, we consider failure as CHD and death

before reaching CHD as censoring.

We have

P (t̃j < Y01 ≤ t̃j+1) = S(t̃j)− S(t̃j+1) ≈ Ŝ(t̃j)− Ŝ(t̃j+1)

where Ŝ(tj) is the Kaplan - Meier estimator for the transition 0→ 1.

To construct a censored data histogram, create a set of K equal-width intervals
(
t̃j, t̃j+1

]
,

j = 1, . . . , K and over each of them plot a bar with the estimated probability∫ t̃j+1

t̃j

f01(x)dx ≈ Ŝ(t̃j)− Ŝ(t̃j+1)

where f01(x) is the density function for the waiting time Y01

The Framingham Heart Study will be introduced in Chapter 3. In this particular data set,

we have the death times recorded at every exam, i.e. if a subject dies between exam 5 and 6,

his failure time is recorded as 6. As an example I will use the oldest 25% in the male group,

that is men older than 49 at baseline. We will use them since they are a more homogeneous

group. There are 682 men in this age group and after removing the subjects with CHD

recorded at baseline, we are left with 669 men. The censored histogram for this group are

presented below.

Based on the censored histograms, we can assume Gamma densities for the transitions

0→ 1 and 0→ 2, figures 2.2 and 2.3. For the transition 1→ 2, we will assume Exponential

density, figure 2.4.
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Figure 2.2: Censored histogram, transition from healthy to CHD

Figure 2.3: Censored histogram, transition from healthy to death

2.5.3 Density function for the total waiting time

Denote Y the total waiting time until reaching state 2. It is Y = Y01 + Y12 in the case a

subject visits state 1 first, and Y = Y02 for subjects going directly to state 2. The essence of

the flowgraph approach is to estimate the density function for the total waiting time Y . It

has two steps, first to obtain the moment generating function (MGF) for Y and second to

estimate the density of Y , corresponding to the calculated MGF in step 1. I will outline the
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Figure 2.4: Censored histogram, transition from CHD to death

two steps separately.

Calculating the MGF of the total waiting time

The moment generating function (MGF) for a random variable X is defined as

MX(s) = E(exp(sX))

provided the expectation exists for s in an open neighborhood of 0.

Let X and Y be two independent random variables and Z = X +Y be their sum. Then, we

have MZ(s) = MX(s)MY (s), the MGF of Z is the product of the MGF of X and Y .

There is a general procedure to obtain the MGF for the total waiting time for any flowgraph.

This procedure is based on Mason’s rule [17], which was originally developed in the context

of graph theory for solving systems of linear equations. For our example in the 3-state illness-

death model, we don’t need the general rule. Recall the waiting times Yij are assumed to be

independent and p01 = 1− p02 = P (Y01 < Y02). The total waiting time is Y = Y01 +Y12 with

probability p01 and Y = Y02 with probability p02 = 1− p01. Therefore we have

MY (s) = p01M01(s)M12(s) + p02M02(s)

where Mij(s) is the MGF for the waiting time Yij.
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Inverting the MGF of the total waiting time

The flowgraph model gives us the MGF of the waiting time distribution of interest. Our

interest is in computing the Bayes predictive density of the total waiting time and this

requires converting the MGF to a density function. In special cases, such as convolutions of

exponentials, we might be able to find the density of Y by recognizing the MGF, or by using

an inverse Laplace transform. In practice, the general approach is to do it numerically using

saddlepoint approximation.

Theorem [Saddlepoint Approximation]

Let K(s) = log[M(s)] be the cumulant generating function (CGF). Let c1 and c2 be constants

such that c1 < 0 < c2. Suppose M(s) exists for s ∈ (c1, c2), an open neighborhood of zero.

Then the saddlepoint approximation for the density of T is

f̃T (t) = [2πK ′′(ŝ)]−0.5exp[K(ŝ)− ŝt], (2.7)

where K ′′(s) = d2K(s)/ds2 and the value of ŝ is estimated from the so called saddlepoint

equation

K ′(ŝ) = t (2.8)

There are three main derivations of the saddlepoint theorem, the original is due to Daniels

[18], a simpler derivation is due to Barnoff-Nielsen and Cox [19] and the third is due to

Barnoff-Nielsen [20]. For most problems involving flowgraphs, ŝ is a complicated implicit

function of both t and the parameters of the distribution. This is overcome by the use of a

symbolic algebra package, e.g. Maple. The constants c1 and c2 are found numerically, e.g.

the upper bound is the smallest positive root of the saddlepoint equation (2.8). Next, I will

illustrate the theorem with an example for a Gamma random variable.

Saddlepoint approximation for Gamma random variable

A Gamma random variable T ∼ Gamma(α, β) with mean α/β has MGF

M(s) = (
β

β − α
)α, s < β

The cumulant generating function (CGF) was defined as K(s) = log[M(s)].

In our case, we have K(s) = α[log(β)− log(β − s)] for s < β and

K ′(s) =
α

β − s
(2.9)
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K ′′(s) =
α

(β − s)2
(2.10)

The saddlepoint equation (2.8) becomes

α

β − s
= t (2.11)

and is solved by

ŝ = β − α

t
(2.12)

which gives us K ′′(ŝ) = t2

α
and K(ŝ) = αlog(β)− log(α

t
).

Evaluating the quantities in (2.8) and (2.7), we have

f̃T (t) =

(
2πt

α

)−0.5

exp

{
αlog

(
βt

α

)
− tβ + α

}
, for t > 0 (2.13)

We can rewrite (2.13) to give

f̃T (t) =

(
1√
2π

exp (α)

αα−1/2

)
βαtα−1 exp (−βt), for t > 0 (2.14)

which is the density function of a Gamma variable up to a constant. The constant is Stirling’s

approximation to the Gamma function

Γ(α) ≈
√

2παα−1/2e−α

In practice, the saddlepoint density is normalized to integrate to 1. The normalizing constant

is
∫∞

0
f̃T (t)dt and is calculated numerically.

2.5.4 Likelihood calculations

Recall that in the classical survival analysis we have two states, 0 and 1, and we are interested

in the waiting time T for the transition 0 → 1. Let fT (t|θ) and FT (t|θ) be the density and

the cumulative distribution function (CDF) of T and θ be a vector of parameters. Suppose

n subjects are followed and n1 failures are observed and n2 censoring times, n = n1 + n2.

Denote the failure times x1, . . . , xn1 and the censoring times x∗1, . . . , x
∗
n2

. Then the likelihood

is

L(θ|data) =

n1∏
i=1

f(xi|θ)
n2∏
j=1

(1− F (x∗j |θ))

We will illustrate the likelihood calculations for the illness-death model, and will use data

for the oldest male group, age group 4. To derive the likelihood function for this model, let
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fgh, Fgh be the density and CDF of the waiting time in state g until transition to state h.

Based on the censored histograms, we made the following parametric assumptions:

0→ 1, Gamma(α1, β1), mean α1/β1

0→ 2, Gamma(α2, β2), mean α2/β2

1→ 2, Exponential(γ), mean 1/γ

The corresponding densities are:

f01(t|α1, β1) =
1

Γ(α1)
βα2

1 tα1−1exp(−β1t), t > 0

f02(t|α2, β2) =
1

Γ(α2)
βα2

2 tα2−1exp(−β2t), t > 0

f12(t|γ) = γexp(−γt), t > 0

Let xigh be the ith uncensored transition from state g to state h, and let x∗jg be the jth

censored observation in state g. For example, suppose subject i moves to state 1 at exam 5,

and to state 2 at exam 15. Then the subject i contributes data xi01 = 5 and xi12 = 10.

We have 669 men in age group 4. State 1 (CHD) was visited by 308 men, out of them 300

reached state 2 and 8 were censored in state 1. There were 341 direct transitions to state 2,

and 20 men were censored in state 0. The likelihood contribution from the observations in

state 1 is

L1(α1, β1|D) =
300∏
i=1

f12(xi12|α1, β1)
8∏
j=1

(1− F (x∗j12|α1, β1))

where D denotes the observed data. The contribution from the uncensored observations in

state 0 is

L(0,uncen)(α1, β1, α2, β2, p01|D) =
308∏
i=1

p01f01(xi01|α1, β1)
341∏
i=1

p02f02(xi01|α2, β2)

and p01 = 1 − p02 is the probability of moving to state 1, before moving to state 2. The

contribution from the censored observations in state 0 is

L(0,cen)(α1, β1, α2, β2, p01|D) =
20∏
j=1

{
1−

[
p01F01(x∗j0) + p02F02(x∗j0)

]}
Finally, the total likelihood is the product

L(α1, β1, α2, β2, γ, p01|D) = L1L(0,uncen)L(0,cen)
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A symbolic algebra package, such as Maple can do the calculations.

2.5.5 Bayesian predictive density

In this section we will describe how to obtain the Bayesian predictive density, survival and

hazard functions for the total waiting time in a flowgraph model. Bayesian analysis formally

incorporates subjective information about a problem into the analysis via the priors for the

parameters. When there is a lack of prior information, one can use non-informative priors.

These priors are also called vague or flat priors. With flowgraphs usually independent, non-

informative priors are assumed.

The Bayes predictive density of a future failure time T is

fT (t|D) =
∫
fT (t, θ|D)dθ

=
∫
fT (t|θD)π(θ|D)dθ

=
∫
fT (t|θ)π(θ|D)dθ

≡ Eθ|D [fT (t|θ)]

(2.15)

where π(θ|D) is the posterior distribution of θ as defined below.

Definition:[Bayes Theorem]

The posterior distribution of θ, given the data D is defined by

π(θ|D) ∝ L(θ|D)π(θ) (2.16)

where π(θ) is the prior for θ and L(θ|D) is the likelihood function. We can numerically

integrate (2.15) for a given t using Monte Carlo sampling. This involves generating a sample

θ1, . . . θm from the posterior π(θ|D) and calculating

f̂T (t|D) =

∑m
j=1 f̃T (t|θj)

m
(2.17)

where , f̂T (t|θ) is the estimated density from the saddlepoint approximation.

A similar method has been presented in Welton and Ades [21]. They proposed a model,

where the transitions i → j are assumed with constant intensities αj, and a Bayesian

approach is used to find the posterior densities for these rates. They consider the situation

with fully observed data (we know all transitions and the time they occurred) as well as

a situation where some transitions may have not been observed. However, as they pointed

out, the assumption of constant hazard rates is unrealistic and some variations are discussed.
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2.6 Life Table calculations

The classical life table is designed to deal with two states - alive and death. The time is

age for the individuals, and the time span is divided into age periods. For each age interval

the number of people who die, withdraw or enter the study is recorded. The literature on

life tables is vast and different versions of tables have been developed. Chiang ([22]) has

an extensive treatment of life tables. The quantities in which we are interested are the

proportion of the survivors at age x and the life expectancy (also denoted LE) at age x. The

construction of a life table will be outlined briefly, following Chiang ([22]). For simplicity,

we will illustrate the case for a life table without entries and withdrawal during the follow

up.

For each age interval [x, x+ 1) the following quantities are recorded:

lx - number of alive at age x,

lx+1 = lx − dx
dx - number of people dying in the interval [x, x+ 1).

q̂x - proportion of people dying in the interval [x, x+ 1),

q̂x = dx
lx

Lx - number of years lived in the interval [x, x+ 1),

Lx = lx −
1

2
dx assuming on average people survived the first half of the interval.

Tx - total number of years lived beyond age x,

Tx = Lx + Tx+1

êx - life expectancy at age x,

êx =
Tx
lx

The life expectancy ex summarizes the mortality experience for a subject beyond age x. The

quantity px = 1−qx is the probability of surviving in the age interval [x, x+1), given he/she

has survived till age x. The probability of surviving until age x, S(x) can be expressed as

the product

S(x) = p0p1 . . . px

The life table 2.1 is adjusted from Chiang, [22] and it describes the California population in

1960. The initial number lx - number of alive at age x can be arbitrary radix, here chosen

to be 100,000. Table 2.1 shows that of every 100,000 persons born in alive will 97,496 will

survive their second birthday (at age 3), provided that experience the same mortality as the
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California population in 1960.

Table 2.1: Life Table for the total California population, 1960

Age lx dx q̂x Lx Tx êx
0-1 100,000 2378 .2378 97,860 7,058,410 70.58
1-2 97,622 146 .00150 97,539 6,960,550 71.30
2-3 97,476 95 .00097 97,424 6,863,011 70.41
3-4 97,381 77 .00079 97,340 6,765,587 69.48
4-5 97,304 58 .00060 97,274 6,668,247 68.53

2.6.1 Multi-State Life Tables

Life tables can be generalized considering more than 2 states. Peeters ([10]) presents life

tables with states CVD, CHD or CVA, one at a time, added to the healthy state and the

death state. In this case, all the formula above would be state specific. For example dij(x)

is the number of transitions from state i to state j in the interval [x, x + 1). Focusing on

one transition at a time, the probability of developing the disease can be estimated. If we

focus on the states i = healthy and j = CHD, we need to treat CHD as a failure, and death

as censoring. Petters ([10]) has estimated the probabilities of developing different types of

CVD, using a Multi-state life table based on the cohort from the Framingham Heart Study.

Some of the estimated probabilities are presented in the table below:

Table 2.2: Lifetime risk of developing CVD for individuals free of CVD at age 40

Probability of developing a disease
Males

CVD Acute M.I. Stroke. CHF
.67 .32 .16 .18

Females
CVD Acute M.I. Stroke. CHF
.59 .17 .21 .19
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2.6.2 State specific life expectancies

Life expectancies can be calculated from the estimated survival function specific for a

particular state. In this way the life expectancies for a healthy subject can be compared

with the estimated time free of a particular disease. The results from Peeters ([10]) are

presented in Table (2.3) below.

Table 2.3: Life expectancy (LE) and residual LE free of disease

LE and residual LE free of disease
Males LE free of history of

Age LE CVD CHD M.I. CVA CHF
50 26.2 19.9 21.5 23.3 25.2 25.5
70 12.0 7.38 8.69 9.94 11.2 11.4
Females LE free of history of

Age LE CVD CHD M.I. CVA CHF
50 32.1 26.4 28.4 30.9 30.9 31.2
70 16.0 11.3 13.0 15.0 14.9 15.2

At age 50, the life expectancy for a male is 26.2 years and the life expectancy free of CVD

is 19.9. This leaves 6.3 years of the expected residual life spent with CVD. For women at age

50, 5.7 years are estimated to be spent with CVD. Men have higher estimates for expected

years lived with CVD at both age 50 and 70. On the other hand 50 year old females will

live on average 0.29 more years with stroke and 0.26 more with CHF compared with males.

As indicated by the authors, the greater longevity of females leads to higher burden of some

of the diseases.

The multi-state life table method is designed primarily for situations in which actual failure

and censoring times are unavailable and only the total numbers are given. They are

appropriate for a homogeneous population, since the effects of covariates are not considered.
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CHAPTER 3

Three-state Models

3.1 The illness-death model

We introduced the mortality and the competing risk models in Chapter 2. These models have

been used extensively for modeling the risk of binary outcomes. As the population continues

to age however, the process of moving from health to death becomes more complex with

larger and larger proportions of the population living with prevalent chronic diseases. This

Chapter deals with the next step in understanding this process of movement between states;

it focuses on the 3 state health, illness, and death model.

Figure 3.1: Illness-death model

Figure 3.1 presents the three state model commonly referred to as the illness-death
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model. The 3 states, healthy, illness and death, are denoted state 0, state 1 and state 2

respectively. The illness-death model has been widely used to compare mortality before and

after a particular event such as heart transplant (Hougaard [23]) or bone marrow transplant

(Aalen [13]). This model was discussed in early papers by Fix and Neyman [24] and Sverdup

[25]. There has been less use of the model for considering the interrelationship of health,

chronic diseases such are cardiovascular or cerebrovascular disease, and death.

There are two equivalent methods for applying the multi-state approach to a particular

problem:

• Estimate the transition (hazard) rates for moving between different states or equiva-

lently,

• Combine the transition rates to obtain transition probabilities.

In this chapter, we will use both approaches.

In sections 3.4.2 and 3.4.1 we will examine methods for estimating the transition rates

0 → 1 and 0 → 2. The goal is to compare the two transition rates, before and after CHD.

This could be used to evaluate the role CHD plays in mortality.

In section 3.5 we estimate all three hazard rates and combine these estimates (often called

a synthesis of a multi-state model), in order to calculate transition probabilities.

Transition probabilities are the conditional probabilities of moving to a particular state

given their previous history and can be used for estimating the prognosis of individuals,

given their event history (in this case whether they have developed CHD) at a given time.

In order to compare the hazard rates, we have to decide what they would have in common

and in what ways they will differ. In this chapter we assumed the two hazard rates (for

moving from state 0 to state 2 and for moving from state 1 to state 2) are proportional, i.e.

they have the same baseline hazard up to a constant of proportionality that is a function

of their characteristics. In section 3.4.2 the two transition rates share the same covariate

effects (coefficients) and the effect of CHD is modeled as a multiplicative factor increasing

the hazard after a person enters the CHD state.

In section 3.5, the effect of CHD is modeled as the covariates are considered to have

different effects before and after CHD. Next, we will introduce some notation and definitions.

30



Denote t1, the time of entering state 1 (for the subjects who enter it) and d = t− t1 time

since entering state 1. We have 3 possibilities for modeling the hazard rate α12 for moving

from state 1 to state 2 depending on the assumption we make:

• If we assume α12(t) does not depend on d, we have a Markov model.

• If we assume the hazard rate α12(t, d) depends on the time in state 1, the model is an

extended-Markov model. (Note that we can write α12(t, d) or α12(t, t1) because of the

linear relation d = t− t1.)

• In the special case α12(d) is a function of d, the time spent in state 1 alone, the model

is called semi-Markov.

3.2 Data

3.2.1 The Framingham Heart Study.

The Framingham Heart Study was designed by The National Heart, Lung and Blood

Institute (NHLBI) (formerly known as the National Heart Institute) to identify common

factors or characteristics that contribute to cardiovascular disease (CVD). The study began

by recruiting an original cohort of 5,209 men and women between the ages of 30 and 62

from the town of Framingham, Massachusetts in the period 1948-1952. The cohort has been

followed since then, with exams every two years. Data on the vital status and the occurrence

of CVD was recorded. Statistical analysis of the data has identified several major CVD risk

factors, as well as information on the effects of these factors such as blood pressure, blood

triglyceride and HDL cholesterol levels, age, gender, smoking etc. An Offspring Cohort was

added in 1971, and a Third Generation Cohort began in 2000.

3.2.2 The data files.

The data set we will use contains the exact dates of CHD or death for 4,266 people from the

Framingham Heart study. A new procedure for measuring cholesterol was adopted at exam

4 onwards and is considered more reliable. We will use exam 4 as a baseline (follow up time

t = 0). The other covariates in our analysis were measured at exam 4. The last time of death

recorded is at 37.69 years. There were 518 individuals who had experienced at least one event
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(CHD, CVA or death) before exam 4, and were excluded from the analysis. We also excluded

the individuals with missing at least one of the covariates cholesterol, smoking status, age at

exam 4 , diabetes or systolic blood pressure. There were 3,201 individuals (1,520 men and

1,681 women) who were included in the analysis. There were 2,722 deaths and 1,400 CHD

times recorded. The data were acquired through a limited public use agreement with the

National Heart, Lung, and Blood Institute.

3.3 Exploratory analysis

We introduced the Framingham heart study in section 3.2 and the data set which will be used

in this section. The variables considered in our analysis are age at exam 4, diabetes, smoking

status, systolic blood pressure, total cholesterol level and gender. Three new covariates will

be used as well: z is defined as an indicator for being in state 1, and c risk is an indicator for

just moving to state 1 and d is the time spent with CHD. They are time dependent variables

and do not depend on the the baseline covariates, rather they describe the transitions in the

3 state model. All variables are presented in Table 3.1.

Table 3.1: Variables

Categorical Variables
psm indicator for smoking
diab indicator for diabetes
z indicator for being in state 1 (CHD state)
c risk indicator for just entering state 1

Continuous Variables
age age at exam 4 in years
spf systolic blood pressure
chol total cholesterol level
d time with CHD in years

We described the illness-death model in section 3.1. It consists of 3 states: healthy state,

illness and death, denoted state 0, 1 and 2 correspondingly. Initially every subject was in

the healthy state 0 and there were no drop outs from the study. Among the 1,520 men in

the group, 767 visited state 1 (CHD),among them 637 moved to state 2 (died). There were

683 males who moved directly to state 2. At the end of the study, 130 men were censored
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in state 1 and 70 were censored in state 0.

From the 1,681 women in the study, 633 visited state 1, and from them 468 eventually moved

to state 2. There were 934 direct transitions from state 0 to state 2 and 114 women censored

in state 0.

The most noticeable differences between the two genders are:

• 27% of the women have both events, versus 42% of the men

• 56% of the women died without CHD, versus 45% of the men

It appears CHD plays a bigger role in mortality in the male group.

For the 637 men and 468 women who died with CHD, the distribution of the time spent

with CHD is presented as histograms in figures 3.2 and 3.3.

Figure 3.2: Time spent in the CHD state, men

In both cases, there is a large number of people failing very shortly after being diagnosed

with CHD. One of the components of CHD is sudden coronary death, which is defined as

a death which occurs within 24 hours of the onset of CHD. In the male group, this type

of death accounts for 134 cases, which is 10% of the total deaths. Similarly, in the female

group, we have 94 deaths (6% of the total deaths). There are two points to be made here.

First is that CHD in females includes a higher proportion of Angina Pectoris (AP), which is
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Figure 3.3: Time spent in the CHD state, women

milder form of CHD, compared to Myocardial Infarction (MI). We have 50.98% MI in the

male group ( 23.86% recognized with ECG) versus 39.18% for women ( 17.38% recognized

with ECG). On the other hand men have 30.51% AP, while it accounts for 43.13% of the

CHD cases in women.

The other point is that the proportion of sudden deaths has changed in the last decades

perhaps due to advances and wider availability of medications and preventive health care.

To look for a possible trend we calculated the proportion of sudden deaths (to the total

number of deaths) for each year. The results are presented separately for men and women

in figures 3.4 and 3.5.

We can observe a significant drop around the 12th year of follow up in the male group.

In this group, the average number of sudden deaths per year is 3.37 and the total average

number of deaths is 34.73. The proportions fluctuate due to the relatively small number of

deaths, when broken into one year periods. The 12th year of follow up corresponds to the

early 1970’s. Anderson [7] states that the early 1970s is a time “when there was a sharp

decrease in CHD mortality rates in US and extensive intervention against risk factors being

practiced”.

The covariate c risk was defined as an indicator for just moving in state 1. It will be

useful in accounting for the failures occurring immediately after moving to state 1, as well

as measuring the downward trend for the percentage of sudden deaths.
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Figure 3.4: Proportion of sudden deaths, men

Figure 3.5: Proportion of sudden deaths, women
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Time in our analysis is the follow up time. This is the case with most of the

epidemiological studies. Using age as the time scale has been proposed in the literature,

as well [9].

The Framingham Heart study is an observational study with more than 45 years of follow

up. With such a long time span, the use of follow up time presents challenges. For example,

if we use the Cox model, the coefficient for age βage has the interpretation of the hazards

ratio, for two individuals, one being 1 year older than the other. In other words, the hazard

ratio for two men age 40 and 50 at the beginning of the study should remain the same 20

years later, when they are 60 and 70. This assumption may not be satisfied.

Another challenge related with the long follow up period is that the covariates are recorded

at baseline. Smoking status for example was recorded in the early 1950’s when smoking was

common, particularly in men. In the 1960’s many people quit smoking and the effect of this

variable may be expected to be reduced with time.

These two observation, as well as the analysis that we will perform later, suggest that

the effect of some variables may change with time. In order to capture this, we will consider

models where the coefficients in the Cox model are not constants, but piecewise constants.

To do so, we will split the follow up time into four time intervals:

[τ0, τ1), [τ1, τ2), [τ2, τ3) and [τ3, T )

where τ0 = 0 corresponds to the baseline (exam 4), and the other cut off points in years are:

τ1 = 8.7, τ2 = 15.7, τ3 = 24.7 and T = 37.7 is the end of the study.

The choice of the other split points were made so that we have a split point corresponding

to early 1970’s and to have an interval in the beginning, where figures 3.4 and 3.5 suggest

CHD played a bigger role in mortality.

We will adopt the following convention, for any variable v, we denote:

vXj = v I[τ(j−1) ≤ t < τj)

i.e. the covariate v for the duration of the period [τ(j−1), τj). For example, we define the

covariate z(t) to be an indicator for having CHD. Thus, zX1 = 1 for a subject if at time t

he/she is in state 1 and t < τ1. We have z = zX1 + zX2 + zX3 + zX4, and this will allow

us to model the effect of CHD with a coefficient that is a step function.
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3.4 Multi-state models for the illness-death model

As outlined in Chapter 2, the most general case would require that hazards be modeled

separately for each transition. In the Framingham study, it is particularly interesting to

compare the hazard rates before and after entering the disease state. We will use models

based on the Cox model and the Aalen additive model.

3.4.1 Markov Models

The simplest model is a Markov model that assumes the hazards for the transitions 0 → 2

and 1 → 2 are proportional, i.e. α02(t) = cα01(t). In other words the hazard of dying

changes by a factor the instant a subject gets CHD, regardless of the time this happens or

the covariates. Under the Cox proportional model, the hazard rates are:

αi02(t) = α0(t)exp(β′X i)

αi12(t) = α0(t)exp(β′X i + βz)

where βz = log(c) and Xi is the vector of covariates for subject i. The covariate z is an

indicator for having CHD and was introduced above. Strictly, it can be defined as follows:

z(t) = I[t > u]

It is zero before the time u of getting CHD, and one afterwards. For the individuals who do

not get CHD, u = ∞. This is an example of a Markov model. We fit separate models for

males and females. The results are presented in Table 3.2.

The coefficient for age in the female group is modeled as a step function: it is .046 for the

first two time periods of the follow up time, and .073 for the third and fourth time periods.

The variables age1half = ageX1 + ageX2 and age2half = ageX3 + ageX4 are used, since

we found that if we use the variables ageXj for j = 1, . . . , 4 the first two coefficients are

similar, and far apart from the other two. The Likelihood ratio test did not show a better

fit for a model with all four coefficients (p-value 0.33). We will comment on this fact later,

when we compare it with the extended Markov model.

The coefficient βz suggest that a woman with CHD has 3.15 times higher hazard of dying in

the first three time intervals. The hazard ratio reduces to 1.10 for the fourth time period.
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Table 3.2: Markov Models

Markov Model for Females

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age1half .0458423 .0076186 6.02 0.000 .0309101 .0607746
age2half .0735431 .0043828 16.78 0.000 .0649529 .0821332
diab .7680075 .155011 4.95 0.000 .4641916 1.071823
psm .3301785 .0576088 5.73 0.000 .2172673 .4430897
spf .0065403 .0011432 5.72 0.000 .0042997 .008781
z 1.149581 .08949 12.85 0.000 .9741837 1.324978
zX4 -1.050464 .1183848 -8.87 0.000 -1.282494 -.8184344

Markov Model for Males

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0757493 .0038013 19.93 0.000 .0682988 .0831999
diab .4692469 .1469549 3.19 0.001 .1812206 .7572733
psm .3482076 .0657918 5.29 0.000 .2192581 .477157
spf .0128758 .0017516 7.35 0.000 .0094428 .0163089
spfX4 -.0107079 .0029592 -3.62 0.000 -.0165079 -.004908
chol -.0026135 .0007346 -3.56 0.000 -.0040533 -.0011736
zX1 2.613352 .192252 13.59 0.000 2.236545 2.990159
zX2 1.473335 .1446044 10.19 0.000 1.189916 1.756755
zX3 1.207545 .1020531 11.83 0.000 1.007525 1.407565
zX4 .4848401 .0833764 5.82 0.000 .3214254 .6482549

We compare different models using the Likelihood ratio test, which is described in detail in

the Appendix.

The model for males requires the coefficient for the variable z to be modeled as a step

function as well. During the first time interval, the proportion of sudden deaths was very

high and is reflected in the hazard ratio, estimated as 13.64. The hazard ratio estimated for

the fourth interval 1.62. The coefficient for the cholesterol level is negative. We will compare

this result with the estimate from the Aalen model. The role of this covariate for getting

CHD is examined in section 3.4.4, here we model the hazards of dying.

The coefficient for blood pressure is modeled as a step function, with a separate constant for

the fourth interval. The effect is reduced substantially. This may be attributed to the long

follow up period and its variability. Even if we assume that the two measures are highly

correlated, the availability of effective drugs regulating high blood pressure in the later time
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periods inevitably reduced its effect.

Using only an indicator for the CHD, the coefficients reflects both the burden of sudden

deaths as well as for deaths which occur after a long time spent with CHD. In order to

account for the sudden deaths, we will use an extended Markov model, i.e. we will allow the

hazard to depend on the time spent in the CHD state.

A test based on the scaled Shoenfeld residuals was used to test for the proportionality

assumption (described in the Appendix). The combined p-values for these test were .06

for females and .14 for males. The variable z has the most contribution for the large test

statistics (small p-value) in the model for women.

3.4.2 Extended Markov Models

The models we used in the previous section assumed that having CHD increases the mortality

by a factor, which is a constant, i.e. the same for the first day after getting CHD as one year

later. As we discussed in section 3.3, the mortality is very high at the beginning, particularly

the first day (sudden coronary death). The next step in our analysis is to include time since

diagnoses as a covariate. This leads to a general class of Markov models - the so called

Extended Markov models. The hazard rates are modeled as follows:

αi12(t) = α0(t)exp(β′X i + βz + f(d))

where d is the time spent in state 1 and f(d), d ≥ 0 is any function and z is the indicator

for entering the CHD state introduced above. The function f(d) needs to be defined for

d = 0, 1, . . . which represents the number of years after the diagnoses.

For a small data set, an extended Markov model can be fit with splitting the records at

the failure times, that is the record for subject i will be split at any time somebody dies before

he/she does. This is not feasible for a data set with more than a thousand observations.

As reported by STATA, this will create more that 2,000,000 observations. In order to avoid

this, we rounded the death times and the CHD times to the next year. Potentially, this

may artificially increase the number of people who has died immediately after getting CHD.

However, in our data set, among the 357 people with CHD and death within a year apart,

216 died within a day from the diagnoses. For the rest of this section, we will work with

both events measured in years.
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We will use two parameters to describe the function, one for the value f(0) and the other

for a linear trend f(d) = kd, d = 1, 2 . . .. The value of the function at d = 0 will be modeled

as a separate covariate c risk, which is defined to be one only on the year the diagnoses is

made for CHD. Therefore, this is a time varying covariate and its value for subject i will be

1 for at most one year. If subject i visits state 1, the covariate c risk has the value 1 for just

that year.

Often it is the case, that if a subject survives a certain amount of time after getting the

disease, his/her chances improve. The second coefficient k, used to determine the function

f(d) measures the long term effect of the disease. If a subject has spent d years in state 1,

the hazards ratio, compared with a person without CHD is exp(βz + kd). If the coefficient

k has negative value, it will indicate the chances of a patient are improving the longer they

state in state 1, compared with a person who has spent less time in state 1.

Let d1 and d2 be the time spent in state 1 for two subjects with CHD. Their hazards

ratio is exp(k(d1 − d2)), as long as both of them has survived the first year. One limitation

of modeling the function f(d) with only one coefficient for the range d ≥ 0 is that the

hazards ratio depends only on the difference of the time spent in state 1 , i.e. the same for

(d1 = 2, d2 = 3) and (d1 = 15, d2 = 16).

Next, the results for males and females are presented in Table 3.3 using the Extended

Markov models.

The model for females has coefficient βage which is a step function, with very similar

values to the Markov model. The coefficients for diabetes and smoking status are slightly

smaller in the Extended Markov models in both genders. The same holds for the coefficients

for the indicator variable z. This was expected, since in the Markov model, the coefficient

has to account for both the very high rate of sudden coronary deaths, as well as for the

increased mortality in general.

The Markov and the extended Markov models have the coefficients for the variable z as step

functions. In the both groups, the step function has two different values, one for the first 3

time periods and a noticeably smaller coefficient for the last time period. Note, that for the

fourth period, the coefficient for the indicator z is βz + βzX4. Therefore, the coefficient for

the fourth intervals are .27 in the male group and .08 for females.
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Table 3.3: Extended Markov Models

Extended Markov Model for Females

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age1half .045257 .0075757 5.97 0.000 .0304088 .0601051
age2half .0701719 .0043682 16.06 0.000 .0616104 .0787334
diab .6464857 .1561526 4.14 0.000 .3404322 .9525392
psm .2938729 .0574288 5.12 0.000 .1813145 .4064313
spf .0063993 .0011363 5.63 0.000 .0041722 .0086264
c risk 1.651802 .1529767 10.80 0.000 1.351973 1.951631
c riskX4 -.5922909 .21503 -2.75 0.006 -1.013742 -.1708397
z .6928349 .1205777 5.75 0.000 .4565069 .9291628
zX4 -.6100307 .1418639 -4.30 0.000 -.8880788 -.3319826
d -.0144801 .0076415 -1.89 0.058 -.0294571 .0004969

Extended Markov Model for Males

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0718955 .0037845 19.00 0.000 .0644781 .0793129
diab .3909468 .147081 2.66 0.008 .1026734 .6792202
psm .3279029 .0656417 5.00 0.000 .1992475 .4565582
spf .0104134 .0016919 6.15 0.000 .0070974 .0137294
spfX4 -.0082601 .0029135 -2.84 0.005 -.0139704 -.0025498
chol -.0021518 .0007303 -2.95 0.003 -.0035832 -.0007203
c riskX1 2.185154 .2112392 10.34 0.000 1.771133 2.599176
c riskX2 1.619721 .1890416 8.57 0.000 1.249206 1.990236
c riskX3 1.16372 .1582187 7.36 0.000 .853617 1.473823
c riskX4 1.060161 .1508432 7.03 0.000 .764514 1.355808
z .9098498 .0907009 10.03 0.000 .7320793 1.08762
zX4 -.6375623 .1257962 -5.07 0.000 -.8841183 -.3910063

The variable c risk was not included in the Markov models, since it depends on d - the

time spent in the CHD state (in this case d=0). This is an indicator variable, for just entering

the CHD state. Strictly speaking, the indicator is one if the CHD and death occurred in

the same year, since the CHD and death dates were rounded to the beginning of the next

calendar year. This variable accounts precisely for the high rate of mortality for people just

entering state 1. The figures 3.4 and 3.5 show that the effect of this variable is reducing for

the years when the Framingham study took place. The coefficients in our model reflect this

downward trend - as in the figures this is more noticeable in the males group.

Cholesterol is a significant variable for males, with a coefficient suggesting beneficial effect.

41



This was also observed in the Markov model and we commented there for possible reasons.

Later, we will see that the effect of cholesterol for the transition from the healthy state to

the CHD state is adverse.

So far we discussed the differences between the Markov and the Extended Markov models

for both genders. We have observed similar differences/similarities. Next, we will compare

the Extended Markov models for the two gender groups.

The effect of CHD to mortality can be seen through the coefficients for the variables

indicating transitions in the multi-state model, i.e. the variables z and c risk. For both

of them the effect is stronger in the male group. The effect of entering the CHD state is

modeled as a step function with four different values in the male group, while two values

are sufficient for females. This indicates that the effect of CHD, particularly sudden deaths

reduced more significantly in the male group. Another reason may be that there were more

males dying after just entering the CHD state and therefore make it more noticeable (the

test for significance of the coefficients has more power).

The effect of the covariate d - time spent in the CHD state was not significant for males and

has a negative value for females. This indicates reducing the effect of CHD with the time

spent in this state in women. We observed in the exploratory analysis that women spent

more time in the CHD state and the effect of CHD to mortality appears to be smaller.

In summary, the effect of CHD to mortality in the male group was modeled as a factor

to the hazards ratio - either exp(βz + βc risk) initially and exp(βz) later on. The mortality is

higher at the beginning and stabilizes afterwards.

In the female group the effect of CHD was modeled as a factor: exp(βz + βc risk) initially

and exp(βz + dβd), which reduces with the time a women stays with CHD.

One difference between the models for males and females, in both the Markov and the

Extended Markov models, is that the coefficient for age is modeled as a step function for

females. As we have commented in the beginning of the Chapter, this is to be expected, since

otherwise we assume that the hazard ratio for two individuals age 40 and 50 will remain the

same, even when they are 70 and 80. Therefore, we expect it to increase, and in the model

for male a variable ageX4 has a borderline p-value 0.07. If we use this model we will obtain

the coefficients βage = .069 and βageX4 = .013. Therefore, the effect of age will be modeled

as a step function, with the value 0.069 for the first three time periods and 0.082 for the last

period.
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In both models for males, i.e. if we use a model with a constant as a coefficient for age

(covariate age) or a step function (variables ageX4 and age ) the effect of age changes less

for the duration of the follow up. We have a noticeable difference (0.025) in the female group

for the first and the second half of follow up. One explanation we can offer is that the effect

of CHD is stronger in males, and accounting for it leaves less explanatory power for age. In

the female group, particularly since many women live many years in the CHD state, age is

more important - loosely speaking, at the end they often die of old age, even if they suffer

from CHD. Another reason is that in the first half, fewer women died, so the effect is not so

pronounced.

We compare the coefficients for the remaining variables: the effect of smoking and systolic

blood pressure is slightly higher in males, the effect of diabetes is higher in women - a result

reported by other studies as well.

A test based on the scaled Shoenfeld residuals was used for the proportionality assumption.

The test is detailed in the Appendix. The combined p-values for this test were .48 for females

and .58 for males.

3.4.3 The Aalen additive model

The Aalen additive model was introduced in Chapter 2. The main difference from the Cox

model is that the hazards are modeled as a linear combination of the covariates. The Aalen

model allows for time varying coefficients and time varying covariates. The hazard function

for the transition i→ j is modeled as:

αij(t,X) = β0(t) + β1(t)X1(t) + . . .+ βk(t)Xk(t) (3.1)

In our case, we have fixed time covariates, but the possibility of having time-varying

coefficients is appealing, having discovered in the previous section that the effect of some

covariates changes with time.

The regression coefficients βh(t), and possibly also the covariates will depend on which pair

of states is considered. Let’s assume there are k covariates considered for the transition (i, j)

and we observe n individuals. The design matrix Y ij(t) (n× k + 1) is defined as follows:

There is one row for each subject, if he is still at risk, the row is (1, X1(t), . . . , Xk(t)), and

zero if the individual is not at risk. The multivariate intensity process for the multivariate

counting process for the transition (i, j) can be written in the matrix form:
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λij(t) = Y ij(t)βij(t)

where βij(t) = (β0(t), β1(t), . . . , βk(t))
′. We are interested in estimating the cumulative

regression coefficient functions Bh(t) =
∫ t

0
βh(u)du. The vector of these functions for the

(i, j) transition is denoted byBij(t). Following Aalen [12] the vectorBij(t) can be estimated

by:

B̂ij(t) =

∫ t

0

H ij(s)dN ij(s)

where H ij(t) is the generalized inverse of Y ij(t) and N ij(t) is the multivariate counting

process, counting for each individual the transitions from state i to state j. The estimation

procedure is well defined only for the time when the matrix Y ij(t) has full rank. The matrix

H ij(t) is calculated as:

H ij(t) = (Y ′ij(t)Y ij(t))
−1Y ′ij(t)

As noted in Klein and Moeschberger [26], this is a least-square estimation technique. For

comparison, the Cox proportional hazards model relies on likelihood based estimation. The

basis for the statistical theory of the estimator B̂ij(t) is the fact that B̂ij(t) −Bij(t) is a

martingale. Addreg - a program in R, has been developed by Aalen and Fekjer and is available

online, (see [13]) which fits the Aalen model. We have used Addreg to fit the Aalen model for

each for the three transitions 0→ 1, 0→ 2 and 1→ 2 separately. This is a major difference

from the approach we used with the Cox model- we assumed the two hazard rates 0→ 2 and

1 → 2 to be proportional. Further, the Aalen model obtains estimates for the cumulative

hazard function Bij(t) and not for the coefficient function βij(t). Smoothing estimators have

been considered for βh(t), Aalen [27], but this is beyond of the scope for this thesis. The

cumulative coefficient function is an integral of the coefficient function and mathematically

can be obtained by differentiating. However, the estimate B̂ij(t) is a step function and

differentiating is not possible. We will make inference for the coefficient function based on

the slope for the cumulative hazard function. We will present the coefficient functions for

the transitons 0→ 2 and 1→ 2 and will compare them with the inference we reached from

the previous section. The transition 0 → 1 will be discussed in the next section, where we

will discuss methods to combine information from different transitions.

We note that the results from the previous section has been obtained after we rounded

the CHD and the death times to the next year (considered them at the end of the year). The
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Aalen model is fit with the original data recorded in days. When individuals have tied CHD

and death times (sudden coronary death) we assumed that CHD occurred 0.5 days earlier.

The Aalen model does not allow tied failures.

Figure 3.6: Transition 0→ 2, Females

Figures 3.6 and 3.7 present the 6 cumulative coefficient functions for the transitions 0→ 2

and 1→ 2 in the female group. The 95% Confidence limits for B̂ij(t) at every time point t

are included as well. We will stress again that this are confidence bounds for the cumulative

function and cannot be directly used as confidence bounds for the regression functions.

The first observation is that the estimate for the cumulative regression function for age

has an increasing slope. It increases smoothly for the transition 0 → 2 and resembles a

piecewise linear function for the transition 1 → 2. This fact suggests that at the beginning

45



Figure 3.7: Transition 1→ 2, Females

of the study, the mortality of women with CHD was not affected by their age. We showed

that at the beginning of the study the proportion of sudden deaths was high and the mortality

rate among women with CHD was more to do with this fact, than with age. Later on, as

the cohort ages, age plays more important role. We concluded in the previous section that

many women with CHD appear to die of old age, i.e. the mortality is driven by the aging

process and CHD plays a less important role. The piecewise linear shape of the cumulative

regression coefficient for age in the female group may be used to explain why we needed

the coefficient βage to be a step function in the Extended Markov model. However, as it

can be seen from the the 95% confidence bound, the estimate has larger variance that the

estimate for the transition 0 → 2. The confidence bound Bage(t) for males is narrower for
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Figure 3.8: Transition 0→ 2, Males

the transition 1→ 2, perhaps due to the higher proportion of men getting the disease.

The plots of the cumulative regression functions for cholesterol are consistent with the

results from the Extended Markov models in both genders. The covariate chol was not

significant for women and appeared to be protective for males (negative coefficient βchol).

The covariate diab, which is an indicator for having diabetes at baseline was found to have

stronger effect in females in the previous section. This can also be observed from the slope

of the corresponding cumulative regression functions. For the transition 0 → 2 in females,

the slope seems to be initially zero, while in the transition 1→ 2 is steeper at the beginning.

This can be just due to the later onset of CHD in women. In both Extended Markov models,

the covariate diabX4, which is the indicator for diabetes only for the last time period was
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Figure 3.9: Transition 1→ 2, Males

found to be non-significant.

3.4.4 Modeling the transition to CHD

In this section we will model the transition 0→ 1. If a person dies before developing CHD,

he/she is considered censored. We will use both the Cox and the Aalen models to model

this hazard rate. The covariates z and c risk, will not be used in this section, since they

are always zero for this transition. Figures 3.10 and 3.11 present the results from the Aalen

model. The estimated coefficients from the Cox model are given in Table 3.4.

The coefficient for age in the model for females is not significant. The reason for this

finding is that the CHD is a disease that peaks at the age interval 60-70, (mean values 65.52
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Figure 3.10: Transition 0→ 1, Females

for males and 69.28 for females). Initially, at the beginning of the study, the mean age

of our cohort is 51.3 and older people tend to have more transitions to state 1. Later on,

when the mean age of the cohort passes the age at which CHD peaks, more younger people

tend to transition to state 1. The Aalen model can help us understand this phenomena.

The regression coefficient function for age (as seen as the slope of the cumulative regression

function) is positive initially, and somewhere around 20 years becomes negative. The time

at 20 years of follow up corresponds to mean age for females of around 71.

The finding that the coefficient for age in the Cox model for women is not significant has

several possible explanations. One is that other factors have more influence for whether

a woman gets CHD or not. The second reason is that the Cox model has the ability of
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Figure 3.11: Transition 0→ 1, Males

summarizing the effect of a variable for the whole interval in the study. If at the beginning

age is associated with a higher hazard of getting CHD, but later on with lowering it, the Cox

model combines these effects into one coefficient. The third reason, we can think of, is that

there are smaller percentage of women getting CHD than men and the test of significance

has lower power. Lastly, aggressive prevention programs were organized during the time of

the Framingham study. It is possible, they were more focused on a particular age group,

and therefore confounded the effect of age with that of the program.

Similar results are found for the males. The coefficient for age in the model for males

is significant but with a small magnitude (0.013), compared with the coefficient for the

transition to state 2 (0.77) from Table 3.2. The Aalen model suggests that the coefficient
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Table 3.4: 3 state model, transition to CHD state

Model for Females, transitions 0− > 1

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age exam4 .0042861 .0057243 0.75 0.454 -.0069333 .0155055
spf .0099403 .0016677 5.96 0.000 .0066717 .0132089
diab 1.084281 .200543 5.41 0.000 .6912239 1.477338
chol .0037301 .0009114 4.09 0.000 .0019438 .0055164

Model for Males, transitions 0− > 1

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age exam4 .0132303 .0047431 2.79 0.005 .003934 .0225266
spf .0085506 .0018134 4.72 0.000 .0049965 .0121048
diab .471877 .1874982 2.52 0.012 .1043873 .8393666
chol .0044723 .0008736 5.12 0.000 .0027602 .0061845

function for age becomes negative around the same time as in the female group. We decided

to keep the coefficient for age in the female group, as we are going to use it for calculating

the transition probabilities in the next section.

The coefficients for cholesterol in both groups are significant, indicating 5% increase hazard

(for males) for a difference of 10 mg/dL (for males). The cumulative regression function in

the Aalen model has roughly a constant slope, except for the end of the study, where the

risk set is small.

The coefficient for the variable diab, indicator for diabetes, is significant for both males and

females. Diabetes increases the hazard of getting CHD by a factor of 2.94 in women, and

1.60 in men. It is interesting to look at the graph of the cumulative hazard function in the

Aalen model, particularly in the female group. The slope is close to zero initially, later on

rises up very sharply and again levels off. If we look in the diabetes cases, there are 45

women with diabetes, with 32 in the risk set (here risk set is alive, without CHD) at 3,578

day of follow up (9.8 years) . By the 5, 578 day of follow up (15.2 years), there are 12 left

in the risk set. We can observe the ability of the Aalen model to pick up the effect of a

covariate locally, but it comes as a shortcoming as well. On the other hand, the Cox model

summarizes the effect of diabetes for getting CHD.

The effect of systolic blood pressure is significant for both genders, with hazards ratios 1.10

(females) and 1.09 (males) for an increase of 10 mmHg.
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3.5 Transition Probabilities

3.5.1 Transition Probabilities based on the Cox model

We defined the transition probabilities in Chapter 2:

Pij(s, t) = P (X(t) = j|X(s) = i)

where i, j are two states and s ≤ t are two points in time.

In this section we will focus on combining the estimated hazard rates from the individual

transitions to obtain transition probabilities. This is sometimes called a synthesis of a multi-

state model [28, 26].

In the simplest case, given the individual’s set of covariates, we can estimate P01(0, t)

and P02(0, t) - the probability that by time t, the subject will have developed CHD or have

died.

In a more general situation, we may be provided with the information whether the

individual has entered the CHD state by time s. The transition probabilities P02(s, t) and

P12(s, t) will compare the individual prognosis, conditional on the information up to time s.

We derive the formulas for the transitional probabilities, similar to the ones derived for

the competing risk model in Chapter 2.

The probability of not leaving state 0 is:

P00(s, t) = exp

(
−
∫ t

s

(α01(u) + α02(u))d(u)

)
(3.2)

The transition probability P01 in the Markovian case is:

P01(s, t) =

∫ t

s

P00(s, u)α01(u)P11(u, t)d(u) (3.3)

where

P11(u, t) = exp

(
−
∫ t

u

α12(x)d(x)

)
(3.4)

The transition probabilities P12(u, t) and P02(u, t) can be estimated

P12(u, t) = 1− P11(u, t), P02(u, t) = 1− P01(u, t)− P00(u, t) (3.5)

Another way to estimate P02(u, t) is
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P02(s, t) =

∫ t

s

P00(s, u)α01(u)P12(u, t)d(u) +

∫ t

s

P00(s, u)α02(u)du (3.6)

In the above formula, the first term corresponds to probability of going to state 2 via state

1, and the second term, to the probability of going directly to state 2. The two expressions

for P02(s, t) are equivalent.

If we have the extended Markov model then P11(u, t) above and in Equation 3.3 has to

be replaced by

P11(u, t) = exp

(
−
∫ t

u

α12(x, x− u)dx

)
(3.7)

In section 3.4 we developed models using the variables z- an indicator for being in the

CHD state and c risk- an indicator for just entering the state, and d- time spent in state 1.

Further, we interacted these variables with the follow up time, using 4 periods. Therefore,

we modeled the effect of CHD as changing the hazard of dying by a factor, depending on

when the transition occurs and the the time spent with the disease. In this section, in order

to estimate the transition probabilities, we need to estimate the baseline hazard, which

presents problems when using time-varying covariates both computational and inferential,

as discussed in [26] (p.307).

To avoid this, we can adopt a different approach. This will present another use of the

multi-state models. Instead of assuming that the hazard changes by a factor, we can assume

that the effect of some factors is altered moving to another state, e.g. the effect of high blood

pressure is different before and after getting CHD. This corresponds to assuming different

coefficients for covariates before and after getting CHD. This approach is used by Klein at.

al. [26] for modeling the survival of cancer patients after bone marrow transplant.

We will use the following convention: for a variable v, we will denote v nochd = vI[t ≤ u]

and v postchd = vI[t > u], where u is the time of the diagnoses of CHD, and u = ∞ for

individuals who never visit the CHD state.

The transition 0→ 1 was modeled in section 3.4.4. Next, we will present the results for

the transitions 0 → 2 and 1 → 2 based on the approach outlined above. The results are

presented in Table 3.5.

In both models, only the effect of diabetes after CHD is found to be significant. In both

models, the effect of systolic blood pressure ( variable spf) is different for people with CHD.
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Table 3.5: 3 state model, Females

Model for Females, transitions 1− > 2 and 0− > 2

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age exam4 .0699832 .0039429 17.75 0.000 .0622553 .077711
psm .3391367 .0577513 5.87 0.000 .2259463 .4523272
spf nochd .0051733 .0011716 4.42 0.000 .002877 .0074695
spf postchd .0085612 .0011441 7.48 0.000 .0063188 .0108035
diab postchd 1.31061 .204432 6.41 0.000 .9099308 1.71129

Model for Males, transitions 1− > 2 and 0− > 2

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age exam4 .0769317 .003771 20.40 0.000 .0695407 .0843228
psm .3844864 .0658804 5.84 0.000 .2553632 .5136096
spf nochd .0059262 .0014694 4.03 0.000 .0030462 .0088061
spf postchd .0129554 .0014401 9.00 0.000 .0101328 .015778
diab postchd .9668435 .1929836 5.01 0.000 .5886026 1.345084
chol -.0027605 .0007303 -3.78 0.000 -.0041919 -.0013291

We want to address two issues before moving further. We have already discussed the problem

of using the covariate z for calculating the transition probabilities. However, the covariate z

was not found to be significant, after introducing the covariates in the Table 3.5. In a way,

that could be explained as the effect of z is now explained by the different effects of some of

the factors before and after the disease.

The second question that arises is whether the models in section 3.4.2 could have

benefited from introducing interaction terms with the covariate z. If the interaction term

zXdiab = zdiab is included in the models from Table 3.3, both diab and zXdiab are not

significant, so we have to choose one of them. We decided to use diab, since the number of

people with diabetes is very small.

The variable zXspf is not significant in males.

Next, the models from Tables 3.5 and 3.4 are used to calculate the transition probability

P02(s, t) using equation 3.6.

3.5.2 Plots of the Transition Probabilities

Transition Probabilities can be used to estimate the prognosis of dying for an individual

with a particular set of covariates. In order to calculate them, we need to fix the covariates.
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For the continuous covariates, we considered the values age exam4 = 51, chol = 241 and

spf = 150. The categorical variables have different values, as indicated on the plots. The

transition probabilities can also be used to compare the probability of dying, conditional on

whether they have developed CHD or not by a certain time. We give two examples with,

estimating P02(s, t) for s = 11 and s = 21 years. Figures 3.12 and 3.13 present the transition

probabilities P02(s, t) for s = 11 and s = 21 years for a non-diabetic woman. The two graphs

are for a patient with and without CHD at the time s of the prediction. Similarly, figures

3.14 and 3.15 illustrate the same graphs for a diabetic woman.

Figure 3.12: Transition Prob. to state 2, Females, non-diabetic

3.5.3 Transition Probabilities based on the Aalen model

Estimated hazard rates using the Aalen model can be easily combined to obtain transition

probabilities. For a given covariate vector X0, the cumulative hazard rates are estimated
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Figure 3.13: Transition Prob. to state 2, Females, non-diabetic

by:

Âij(t,X
0) =

∫ t

0

X0
ij(s)

′dB̂ij(s)

As in the case of Aalen-Johansen estimator, presented in Chapter 2, the product integral

can be used to obtain estimates for the transition probabilities:

P̂ (s, t) =
t∏
s

(I + Â(du)) (3.8)

Figures 3.16 and 3.17 present plots of the transition probabilities P02(0, t) for a non-

diabetic and diabetic woman. We observe similar curves as in figures 3.12 and 3.14. The

transition rate P02(0, t), as in formula 3.6, combine direct transitions to state 2, as well

as through state 1. The program Addreg was used to calculate the transition rates. The

program does not allow calculating the transitional probability, conditioning on the history

at time s < t. The plots estimate the individual prognosis for a female smoker, 51 years old

at baseline with total cholesterol level of 241 and systolic blood pressure of 150.
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Figure 3.14: Transition Prob. to state 2, Females, diabetic

The plots in figures 3.18 and 3.19 present the transition probabilities of moving to the

CHD state for a diabetic and non-diabetic woman. The other covariates are set as described

above. As we found earlier, initially this probability increases, and later on as the subjects

age, the probability decreases. The increase at the beginning is steeper for females with

diabetes. The models we developed in section 3.4.4 revealed that diabetes highly increased

the risk of CHD, especially for women.
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Figure 3.15: Transition Prob. to state 2, Females, diabetic

Figure 3.16: Transition Probabilities,P02(0, t), Female, non-diabetic
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Figure 3.17: Transition Probabilities, P02(0, t), Female, diabetic

Figure 3.18: Transition Probabilities, P01(0, t), Female, non-diabetic
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Figure 3.19: Transition Probabilities, P01(0, t), Female, diabetic
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CHAPTER 4

Five-state Models

It is estimated that by year 2020 heart disease and stroke will become the leading cause of

death and disability world wide. In this chapter we will study the effect of CHD (Coronary

Heart Disease) and CVA (Cerebral Vascular Accident) individually and jointly on subsequent

mortality. We will be interested in whether the occurence of either disease makes it more

likely to develop the other, and whether the role of the covariates changes depending on the

current state. This is a more realistic examination of the role of chronic diseases in an aging

population and involves considering 5 states.

We use a multi-state model presented in Figure 4.1. This model has the following five

states:

• State 0 - The “healthy” state. All participants begin in this state, free of both CHD

and CVA.

• State 1 - The CHD state. Participant developes CHD prior to developing CVA.

• State 2 - The CVA state. Participant developes CVA prior to developing CHD.

• State 3 - The state signifying that a participant has developed both CHD and CVA.

• State 4 - The Death state.

We use the data set from the Framingham Heart Study that was introduced in Chapter

3. As before, the dataset contains information 3,201 individuals (1,681 females) with 2,722

deaths (1,402 in females). The five state model we consider allows 8 possible transitions

which we denote: 01, 02, 04, 13, 14, 23, 24, 34. I.e., the transition ij occurs when a subject

moves from state i to state j.

61



Figure 4.1: Five state model

Table 4.1: Direct transition to each state

state No of visits Direct transitions to each state
0 1 2 3 4

0 3,201 83 1,307 509 0 1,302
1 1,307 0 240 0 191 876
2 509 0 0 101 93 315
3 284 0 0 0 55 229
4 2,722 0 0 0 0 2,722

Table (4.1) presents the number of observed direct transitions. At the beginning of the

study, all subject were in state 0. In the table, the numbers representing the transition ii

are the number of the subjects who, once in that state, remained in the state. For example,

there were 55 subjects who were observed to have the transition 33. They are considered

censored in state 3 (had both CHD and CVA, but did not die by the end of the study).

There were 83 subjects (3%), for whom no transition from state 0 was observed.

The total number of people suffering from CVA is the sum of the counts for the direct

transitions 0→ 2 (509) and 1→ 3 (191), total of 700 (391 for women).

State 3 is visited only by individuals who experience both events-CHD and CVA. However
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subjects can move to state 3 from either state 1 or 2, depending which event occurs first. For

example, a disease progression for an individual who suffers first from a stroke, later develops

CHD and dies before the end of the study will be described by the multi-state model with

the transitions 02, 23 and 34. From the 1,307 individuals who visited state 1 (developed

CHD), 191 (15%) moved to state 3 (developed CVA). Similarly, from the 509 visits to state

2 (developed CVA), 93 (18%) later transitioned to state 3 (developed CHD).

4.1 Cerebrovascular accidents (CVA) and CHD

Cerebrovascular accident (CVA), commonly known as a stroke, is the death of brain tissue

due to the loss of blood flow to a particular area of the brain. Blood flow may be lost due

to a blockage or the rupture of a vessel. First, we want to compare CVA with CHD, later

we will examine how these two diseases affect mortality.

The mean age of CHD diagnoses are 65.5 years among men and 69.2 years among women.

Similarly, the mean age of CVA diagnoses are 70.1 years for men and 74.1 years for women.

In both diseases, the disease occurs, on average, about 4 years earlier among men than among

women. And, the average age of diagnosis for CVA happens later in life that the average

age of diagnosis of CHD in both genders. This can be seen in Table 4.1 as well, since from

the 284 subjects visited state 3, 191 (67%) transitioned from state 1, i.e. first experienced

CHD.

When we examined the occurrence of CHD alone in Chapter 3, we noted that a significant

number of the deaths after having CHD occurred within a day of the diagnosis and termed

these “sudden coronary deaths.” In Chapter 3 we also observed that the proportion of sudden

deaths was decreasing over the time-span of the Framingham study. A major difference

between the two diseases is in the distribution for the time between the occurrence of the

disease and death. Overall, from the 1,105 subjects who died after developing CHD, sudden

deaths account for 20% of the deaths . On the other hand, from the 544 individuals who died

after developing CVA, only 2% died within a day of the diagnosis. The difference between

the distributions may be seen by comparing the three quartiles (25%, 50%, and 75%) for the

time between the occurrence of disease and mortality for the two diseases. For CHD these

quartiles are 19, 1,761, and 4,453 days; while for CVA the quartiles are 67, 1,110, and 3,011

days.
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We discussed models for predicting the occurrence of CHD in Chapter 3. Here, we first

focus on building prognostic models for CVA. We will then examine whether developing one

disease (CVA or CHD) makes it more likely for a subject to develop the other.

The models for developing CVA for females and for males are presented in Table 4.2. To

arrive at this model, we began with a candidate set of variables, age, cholesterol, smoking

status, systolic blood pressure, and diabetes. We used likelihood ratio statistics to determine

which variables made a significant contribution to the model.

Table 4.2: Model for developing CVA (transition 02).

Model for Females, transitions to CVA

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0377681 .0071433 5.29 0.000 .0237674 .0517688
spf .0130581 .0020989 6.22 0.000 .0089444 .0171718

Model for Males, transitions to CVA
age .0414167 .0076317 5.43 0.000 .0264588 .0563746
psm .2904497 .1351825 2.15 0.032 .0254969 .5554024
spf .0162012 .0028081 5.77 0.000 .0106973 .0217051
diab .8578151 .2674009 3.21 0.001 .333719 1.381911

Different sets of covariates affect the rate men and women develop CVA. The only

covariates found to increase this rate in women are age and blood pressure. The model

for males includes diabetes as well as the smoking status. Both the effects of age and blood

pressure are found to be stronger in men.

It would be interesting to compare the models for developing CVA those for CHD,

presented in Chapter 3. The effects of age, and blood pressure are stronger in the CVA

models for both genders. Cholesterol was found to be significant predictor for developing

CHD, while it does not appear to play a role for CVA. Smoking is included in the CVA model

for males, while it was not included in neither model or CHD. Diabetes was very strongly

associated with the risk of CHD in women, and is not found as a significant covariate for

developing CVA in females. On the other hand, it seems to play more important role for

CVA (coefficient βdiab = .86) than for CHD (coefficient βdiab = .47) in the male group.

One question we are interested in, is whether having one disease affects the probability

that individuals will get the other disease. To examine this, we compare the hazard rates for
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CVA, before and after subjects have CHD. The model for CVA combines the transitions 02

and 13, i.e. having a stroke before CHD is diagnosed and after that. Let z chd be a variable

which is an indicator for having CHD. In order to compare the rates males develop CVA

before and after CHD, we can include z chd in our model. This is similar to the approach

we took in Chapter 3 and corresponds to the assumption that the hazard of getting CVA

increases by a factor after CHD is diagnosed. The covariate z chd was not found to be

significant.

However, another way CHD may influence the transition to state 3 is by altering the

effect of some covariates. To investigate this, we add the interaction of the covariates from

Table 4.2 with z chd. None of these variables were found to be significant. Therefore, we

concluded that the rate at which males are having strokes is the same before and after

CHD is diagnosed. Similarly, we compared the rates individuals are developing CHD, and

having CVA was not found to have any effect. The last finding is less important, since as

we discussed earlier, people usually develop CVA later in life.

4.2 Mortality models using the five-state model.

Next, we will use the 5 state model we described earlier to investigate the role of CVA and

CHD in subsequent mortality. There are four transitions to state 4:

• 04, a person may die without having developed CHD.

• 14, a person may die after having CHD, but without having developed CVA.

• 24, similarly a person may die after having CVA without having developed CHD.

• 34, a person may die after having developed both CHD and CVA.

The goal is to compare the hazard rate for these different transitions and to determine

which risk factors affect these hazard rates. As in Chapter 3, we will consider separate

models for males and females. First, we will compare different models for males, later we

will present a model for females.

4.2.1 Mortality models for men, Markov and non-Markov models

The simplest model we may assume is the Markov model that assumes that the probability

of transition at any time is a function only of time and of the present state. To model this
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assumption we can indicate the effect of being in states 1, 2 and 3 by including indicator

variables for being in these states in our model. The indicator variables are denoted z chd,

z cva and z both for being in states the CHD only, the CVA only, and the CHD and CVA

state respectively.

We examine two possible departures from the Markov assumption. It is possible that the

hazard rate depends on the past history of the process or that the hazard depends on the

time spend in a particular state .

For example, we noted in Chapter 3, that mortality is very high after moving to the CHD

state. In our current model, there are two transitions possible after developing CHD, to state

3 if the person developes CVA or directly to state 4 if the person dies without developing

CVA. We compared the hazard rate from state 3 for the individuals, who were diagnosed

with CHD when moving to the state 3, i.e. those moving through the transitions 02, 23.

It may be conjectured that the hazard rate from state 3 depends on the time spent with

any disease (time spent in state 2 or 3). For example, it may be expected that developing

both diseases in a short interval of time is associated with higher mortality, compared to

those with a longer time between the diagnoses. There are other possible ways the hazard

may depend on the event history. For example, the hazard rate from state 3 to state 4 may

depend on the time spent with CHD or CVA or on which disease developed first.

Examining these possibilities, we found that the hazard rate from state 3 is higher for

individuals diagnosed with CVA first, but does not depend on the time spent in either state

1 or 2. In our analyses, we introduced the new covariate cvafirst, an indicator for having

CVA before CHD and found it was a significant determinant of the hazard for moving from

state 3 to state 4. This covariate affects only the transition 3 → 4 and makes the model

non-Markov, since the hazard depends on previous states as well as the current state. The

result is presented in Table 4.3.

The coefficient for cholesterol is very close to what we obtained for the models in Chapter

3. The same is true for the coefficients for age, systolic blood pressure, smoking status and

diabetes. The hazard of dying increases by a factor of 2.89 if only CHD is present and

by a factor of 2.27 if only CVA is diagnosed. If both are present, the hazard of dying

depends on which disease was diagnosed first. If CHD is first (more common), the hazard is

increased by a factor of exp(1.06 + .82 − .42) = 4.31. If CVA is first, the hazards increases

by exp(1.06 + .82− .42 + .45) = 6.75. In both cases, state 3 has a mortality rate higher than
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Table 4.3: Mortality model , Males

Mortality model for Males

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0782033 .0038345 20.39 0.000 .0706877 .0857189
psm .3655678 .0657504 5.56 0.000 .2366994 .4944362
sbp .0075643 .0014278 5.30 0.000 .0047659 .0103628
diab .4199214 .1472968 2.85 0.004 .131225 .7086179
chol -.0027346 .0007382 -3.70 0.000 -.0041815 -.0012878
z chd 1.061675 .0656575 16.17 0.000 .9329886 1.190361
z cva .8215671 .1049697 7.83 0.000 .6158303 1.027304
z both -.4229321 .1604893 -2.64 0.008 -.7374854 -.1083788
cvafirst .4588426 .1824337 2.52 0.012 .1012792 .816406

from the other states. This can be observed in Table (4.1) - from the 284 subjects (both

genders) visiting state 3, 229 (81%) failed.

The test of the proportionality assumption reveals that it is not satisfied for the indicator

variables for states 1, 2 and 3. In order to avoid this problem we can interact these variables

with time intervals, as we did in Chapter 3. Instead we will look for a different approach,

which we present in the models that follow.

4.2.2 Models for Males with different baseline hazard rates.

In order to develop a model which satisfies the proportionality assumption, we will allow

different hazard rates to have different baseline hazards. The effects of the covariates will

also be allowed to depend on the transition. This corresponds to modeling the hazard as

follows:

αi4(t|X) = α0
i4(t) exp(X i4βi4)

where i = 0, 1, 2, 3 and α0
i4(t) is the baseline hazard for the transition i4.

This corresponds to a stratified Cox model, where the mortality rate from each state is

in a different strata. For example, the hazard rate for the transition 14 corresponds to strata

14.

In this approach, we cannot use indicator variables such as z chd, since they are constant

for each strata. The increased mortality for moving to state 1 for example, would reflect in
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a higher basaline hazard rate from this state. A model using this approach is presented in

Table 4.4.

Table 4.4: Mortality model , Males

Model for Males, transitions to CVA

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0835918 .0049735 16.81 0.000 .0738439 .0933396
age14 -.0243457 .007741 -3.15 0.002 -.0395177 -.0091737
psm .3589073 .0664419 5.40 0.000 .2286836 .489131
spf .0069044 .0014519 4.76 0.000 .0040586 .0097501
diab14 .9352022 .2172404 4.30 0.000 .5094189 1.360986
chol -.0028859 .000741 -3.89 0.000 -.0043382 -.0014336
cvafirst .3502635 .1879008 1.86 0.062 -.0180153 .7185423

The coefficients for smoking, cholesterol and blood pressure are found to be very close

to the ones from the model in Table 4.3. The effect of age reduces for the hazard rate 14.

The estimated coefficient for this hazard is β14(age) = .084− .024 = .060. One explanation

for the reduction in the effect is due to the high rate of mortality after CHD in men. The

high proportion of deaths immediately after CHD increases mortality for the strata 14 and

reduces the role of age. In other words, for two men , given they both have developed

CHD, the hazard ratio for one year difference in age is exp(.06) = 1.06 or 6% higher. The

hazard ratio before they developed CHD (or generally in the same strata, different from 14)

is exp(.084) = 1.09 or 9% higher.

The high proportion of deaths immediately after CHD, we believe, makes the effect of the

covariate cvafirst almost significant (p-value from the Wald test is 0.06). Men who enter

state 3, having experienced CVA before, are those having CHD at the time. Their mortality

is higher compared to those, who developed CHD first, survived the initial hight mortality

rate and later developed CVA, at which time they enter state 3.

Another possible contribution to the covariate cvafirst is the later onset, on average, of

CVA compared to CHD. In other words, as we discussed at the beginning of Chapter 4, CVA

occurs on average 4 years later than CHD. Similarly, the average age for males, entering state

3 from state 2 is 73.5 years old (55 observations), versus average age of 71.5 years old (95

observations) for those having CHD first. We will examine the contribution of this difference
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later.

The coefficient for diabetes is significant only for the hazard rate 14. It is larger that the

one in Table 4.3.

The proportionality assumptions are satisfied for all variables, except for spf and age14.

This is a finding we also observed in Chapter 3. The effect of blood pressure is reduced later

in the study and we can account for this allowing a different coefficient for the last 15 years

of the study, as we did in Chapter 3. There may be several reasons for this phenomena.

Blood pressure is measured at baseline, and in general blood pressure is known to vary more

than other covariates. Another reason is the use of effective medication for hypertension

made available in the second half of the study’s follow up. A third reason may be that the

effect generally reduces with age, however in this particular study, this effect is confounded

with the effect mentioned previously.

The effect of age14 also reduces with time, and we believe has to do with the reduced rate

of mortality immediately after CHD. The higher the mortality rates are, the less important

the effect of age is, and therefore the larger in magnitude the coefficient β14(age) would be.

In Chapter 3, we considered coefficients for age and blood pressure to be piecewise

constants, allowing the effect to change with time. We adopted this approach, since our

goal was to compare hazard rates before and after CHD. The same approach can be applied

here, but would be more tedious, since we have 8 hazard rates instead of 3. We will use a

different approach which will be illustrated in the next section.

We want to look into the effect of the variable cvafirst more closely. Earlier we

hypothesized that some of the effect of the covariate may have to do with the fact that

on average CVA is developed 4 years later than CHD ( 2 years for males entering state 3).

We will consider a model only for the hazard rate α34(t|X), i.e., only for the transition 34.

This resembles the approach we will use in the next section. There we will use models,

where time is measured since entering the state. For this hazard rate, the reason we consider

time since entering the state, is the higher rate of mortality from state 3. From the 284

subjects who visited state 3, 229 died (81% in both genders, 84% for males). Therefore

the combination of both diseases appears to present a serious health burden, and the effect

of other covariates may be reduced and the time since entering the study might be most

important.

The covariate age is not used, rather age state3 is used, which is the age at entering state
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3. As we discussed we want to detect if the effect of the covariate cvafirst has to do with

the later onset of CVA. The results are presented in Table (4.5).

Mortality models for Males, strata 34, age at entering state 3

Table 4.5: Mortality model from state 3 , Males

Model for Males, transitions to CVA

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age state3 .0559122 .0123956 4.51 0.000 .0316173 .0802071
spf .014985 .004307 3.48 0.001 .0065433 .0234266
cvafirst .3467697 .1859612 1.86 0.062 -.0177075 .711247

We obtain practically the same coefficient for cvafirst as previously. Only 3 covariates are

found to be significant. The effect of age (age at entering state 3) is reduced. The coefficient

for blood pressure is higher than the one in Table 4.4. This suggests, that possibly a separate

coefficient β34(spf) could be used in the model from Table 4.4. The effect of the covariate

spf34 was not found to be significant. The model considered above uses only a small portion

of the data set, 150 observations with 126 failures. The test of the proportionality assumption

indicates that it is satisfied (p-value of .75).

4.2.3 Mortality models for Males,time since entering the current
state

We will consider models, where time is measured since entering the state. The importance

of what constitutes time in the Cox model is related to the proportionality assumption. As

we discussed in Chapter 2, the Cox model assumes that the hazard rates for two subjects

are proportional, with a ratio depending on the covariates, but not on time. The hazards

are compared at the same time point. If we use time since entering the study, we compare

subjects at the same time after they entered the study. This has advantages, as we discussed

in Chapter 3, since the coefficients are adjusted for any cohort effects. Also in Chapter 3,

we briefly discussed that age has been used as a time scale [9]. If this approach is used, we

assume the hazards are proportional for two subjects at the same age, when the time since

they entered the study may be different.
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In the previous section, we discussed a model only for the hazard rate α34(t) and argued

that due to the severity of having both CVA and CHD this approach is justified. The

rationale for using time since “in state” is also advantageous for states 1 and 2 since there

are increased mortality initially, especially in state 1. For the transition 0 → 4 time since

entering the state or the study are equivalent.

A model using time since “in state” is presented in Table 4.6.

Table 4.6: Mortality model , Males

Model for Males, transitions to CVA

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0772989 .0047785 16.18 0.000 .0679333 .0866646
age14 -.0359369 .007256 -4.95 0.000 -.0501584 -.0217155
psm .3001082 .065809 4.56 0.000 .1711249 .4290915
spf .0048826 .0013979 3.49 0.000 .0021428 .0076225
diab14 .5978204 .2163211 2.76 0.006 .1738389 1.021802
chol -.002613 .0007358 -3.55 0.000 -.0040551 -.0011708
cvafirst .3783978 .1840152 2.06 0.040 .0177346 .7390609

The coefficients for age are similar with the ones in Table 4.4. The coefficient for age

is slightly smaller, with a larger coefficient for age14. The interpretation of the coefficients

here is different, however. When the time was considered since entering the study, the

coefficient can be interpreted as hazard ratio for one year difference in age. Here, we compare

subjects at equal amount of time after they entered state 1. Therefore the hazard ratio

exp(.77 − .35) = 1.04 suggests a 4% increase for a year difference at baseline (and not

difference of age). The coefficients for blood pressure, for entering the CVA state first and

for smoking are slightly reduced. The coefficient for diabetes is reduced by 57%. The test

of the proportionality assumption suggests it is satisfied for this model.

4.2.4 Mortality models for Females, semi-Markov model

In the previous sections, we compared different models for males and explained how we build

the final model, presented in Table 4.6. Similarly for women, we followed the same approach

and compared models with indicator variables for each state and stratified models with time

since entering the study as the time scale. We also found that the proportionality assumption
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was violated at least for one variable. The model we have chosen as our final model, as in

the case for males, uses time since entering the study. However, the role of the covariates is

different.

We will present two models for women, one only for the transition 34 and a final model

for all transitions. The results for a model only for the hazard 34 are presented in Table 4.7.

Unlike the model for men, the covariate cvafirst is not significant and cholesterol and

smoking are found to be significant. The model is based on 134 observations (103) failures,

time is measured since entering the study and age is measured at baseline.

Table 4.7: Mortality model from state 3 , Females

Model for Males, transitions to CVA

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .0572218 .0136396 4.20 0.000 .0304887 .0839549
diab 1.388561 .5292738 2.62 0.009 .3512039 2.425919
psm .7663314 .2467098 3.11 0.002 .2827892 1.249874

The results assuming different baseline hazards for each transition are presented in

Table 4.8. These models use time “in state.” as the time scale. As in the model for

the transition 34, the model does not require the covariate cvafirst. As we discussed earlier,

we believe that this covariate captures the effect of high mortality immediately after CHD,

which is more present for males, as we found in Chapter 3.

Covariates measuring time spent in states 2 or 3 does not affect the mortality rate from

state 3. Therefore, this is a Semi-Markov model, since the hazard depends on the current

state only, and time is measured since entering the state.

The covariate age04 is included only for the hazard rate from state 0, therefore the

coefficient β04(age)04 = .046 + .015 = .061. The effect of age is decreased after a subject is

diagnosed with either CVA or CHD. We found decreased effect of age only for the transition

from CHD to death in males.

The role of diabetes changes depending on the current state. It is not significant for

people without any disease, and has the highest effect for the hazard rate for α34(t).

The effect of smoking is also increased after entering state 3. The hazard ratio prior to

state 3 is exp(.267) = 1.30 and becomes exp(.267 + .425) = 2.00 after entering state 3.
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Cholesterol is found to affect only the hazard rate 14.

Table 4.8: Mortality model , Females

Model for Males, transitions to CVA

t β̂ Std. Err. z P> |z| 95 % Conf. Interval
age .046486 .0053413 8.70 0.000 .0360172 .0569547
age04 .0148638 .0070911 2.10 0.036 .0009655 .0287621
psm .2670933 .0596187 4.48 0.000 .1502428 .3839438
psm34 .4258012 .2248067 1.89 0.058 -.0148118 .8664143
spf .0029533 .001124 2.63 0.009 .0007502 .0051564
diab14 .6133789 .2216572 2.77 0.006 .1789388 1.047819
diab24 1.057427 .4634109 2.28 0.022 .1491587 1.965696
diab34 1.220815 .5329612 2.29 0.022 .1762306 2.2654
chol14 .0021616 .0011919 1.81 0.070 -.0001745 .0044977

4.2.5 Estimating the cumulative hazard function

The models for males and females presented in Tables 4.8 and 4.6 have different baseline

hazard rates depending on the transition rates. This makes it difficult to compare the actual

hazard rates, so we will compare the cumulative hazard rates for different transitions. To

illustrate this we consider a fixed set of values for the covariates are fixed as: total serum

cholesterol=220, diabetes=1, smoking status=1, systolic blood pressure=130, age at entering

the study= 52.

There are 4 cumulative hazard rates for females, each for the transition rates 04, 14, 24

and 34. The plotted functions represent the cumulative hazard, but evaluating the slope, we

can compare the actual hazard rates.

The largest cumulative hazard is for the transition 34. It corresponds to a very high

mortality rate shortly after entering state 3 and remains with highest slope. The cumulative

hazard from state 2 is the second highest. The hazard rate is also very high initially and

appears to have close to constant slope. A similar pattern is observed for the transition 14,

however it is lower than from the CVA state. It appears that CVA alone is more fatal than

CHD alone, for the specified set of covariates. The hazard from state 0 is very low at the

beginning, increases slowly, until about 30 years, at which time it increases in an exponential
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fashion. Since all subjects are initially at state 0, 30 years spent in the states, corresponds

to 82 years of age. All the comparison here, is solely from the given state, i.e. if a female

moves from state 1 to state 3, her hazard rate of dying is as the hazard rate from state 3,

starting from time = 0.

Figure 4.2: Cumulative hazards, Females

There are 5 cumulative hazard rates for males, the difference is that there are two hazard

rates from state 3, depending on the order of the diseases, as captured by the covariate

cvafirst. These two hazard rates are proportional, with a coefficient of proportionality

exp(βcvafirst) = 1.46 higher for the individuals with a CVA diagnoses first. The cumulative

hazards from state 1 and 2 are similar, with the curve for transition 14 being much smoother,

since there many more transitions. If the cumulative hazard rates are plotted only for the

initial period of time, we can observe that at the very beginning the hazard rate 14 is the

highest. The cumulative hazard rate from state 0 has a similar shape to the female plot.

The scale for the two plots is different, so any comparison has to take this into account.
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Figure 4.3: Cumulative hazards, Males
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CHAPTER 5

Summary and Future Directions

5.1 Summary and Conclusions

We have applied multi-state models to the development and progression of CVD. Our goal

was to develop prognostic functions predicting the probability of moving to a disease state

(CHD or CVA) and the probability for death before and after developing these diseases.

Another question, we examined is how different covariates affect the transition rates between

various states. In Chapter 1 we discussed the currently available prognostic models for CVD.

Chapter 2 outlined the necessary background from survival analysis and we introduced the

Cox and the Aalen models. In Chapter 3 we compared the hazard rates for death before and

after developing CHD. We used extended Markov models, since the mortality was increased

immediately after the diagnoses. We also modeled and discussed how this initial peak

changed with time. At this stage, we focused on evaluating the change of the mortality

after CHD.

We estimated the hazard rates to mortality, allowing the risk factors to play different roles

before and after the disease. We also modeled the hazard rate for developing CHD. The three

transition rates were then combined in order to estimate the transition probabilities at time

t, given the event history at time s < t. Transition probabilities can be used to evaluate

individual prognoses for failure for a fix set of covariates.

The Aalen model was also considered in Chapter 3. The three hazards were modeled

separately. The analysis from the Aalen model complemented the analysis from the Cox

model. The first model has the ability to summarize the effect of a covariate and the

Aalen model has the ability to show local changes (since the coefficients are estimated non-

parametrically). Similarly, as in the Cox models, we estimated the transition probabilities.
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This was done using the product integral introduced in Chapter 3.

Chapter 4 focuses on modeling mortality using a 5 state model, incorporating 2 more

states, one for CVA and one for having both CHD and CVA. We have modeled the risk

factors for developing CVA and whether CVA and CHD increase the likelihood of having

the other disease. We compared different models and found that a semi-Markov model with

a time scale, time since entering the study appears to explain the dynamics between the

disease states. We estimated and compared the cumulative hazard rates for women with a

fixed set of covariates.

The model for males was different, in the sense that the mortality rate from the state

with both diseases depends on the order of the diagnoses. It is higher for individuals who

developed CVA first, due to high mortality rate immediately after CHD. The models we

developed can be used to distinguish the risk factors which are most important for mortality

from each state.

The data set we used for this analysis is part of the Framingham Heart Study. The

recruitment of the cohort took place between 1948 and 1952 in the city of Framingham, MA.

Therefore any conclusion we derived from this data has potential limitations. First is that the

population of the city of Framingham consist of predominantly white people and therefore

the result may not apply to other races. Secondly, during the time the study took place

the treatment of CHD improved noticeably, as improved health care and treatments became

available. Also, we can assume the effect of some risk factors changed during this period.

One example is blood pressure, with the availability of effective drugs for hypertension after

the 1960’s.

5.2 Future work

We have considered models with one and two disease states. To have a more complete picture

of CVD progression, we can also include Congestive Heart Failure (CHF), which is a common

disease after developing CHD. This however would increase the number of transitions, as

adding one disease state in Chapter 4 resulted in 5 transitions. We used the Aalen additive

model in Chapter 3 to compare with our results and to gain more insight into the role of

the covariates. The additive models are easily adaptable for large number of states, since

estimating the transition probabilities is obtained through the product formula, i.e. through
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matrix multiplication. We have observed in Chapter 3, that using coefficient functions for a

covariate has both advantages and disadvantages. An improvement in this direction could be

using a semi-parametric submodel of the Aalen additive model, where the set of covariates

is divided into two groups- the first group modeled non-parametrically (the coefficient for a

covariate v is a function βv(t)) and the second group is modeled parametrically (the coefficient

is βv, which corresponds to a constant effect of the covariate v). One such model was proposed

by McKeague and Sasieni, [14]. As a submodel of the Aalen model, this model allows one to

determine the variables whose effect varies with time. McKeague and Sasieni discussed the

question of how to choose parametric or non-parametric effects. Further, Gandy and Jensen

[29] developed formal tests for this model. Their results can be adjusted to detect particular

alternatives, e.g. against the Cox model.

Flowgraph models were discussed in Chapter 2. They can be very useful in modeling

multi-state models with a large number of states. Their use is limited for our application

since they presently do not allow the use of covariates. One possible direction is extending

these models to allow covariates, for example in the form of the accelerated time failure

models. The estimated baseline hazard rates in Chapter 4 suggest that even models with

constant baseline hazard (exponential density) or piecewise constant may be appropriate.

Another possible direction is to use multi-state models for recurrent events, for example

repeated Myocardial Infarction. Frailty models are particularly useful in a model where the

events are not independent. Bayesian analysis has been used in reliability and repair models.

We are considering applying these techniques for evaluating the prognoses for individuals

suffering multiple heart attacks.
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APPENDIX A

Testing Proportionality Hazards assumptions

The Cox model assumes that the coefficients for all the covariates do not change with time.

Grambsch and Therneau (Therneau, 1994) suggested a test for this assumption based on

the scaled Shoenfeld residuals. The test is performed variable by variable and an overall test

can also be calculated. Let assume there are no tied failure times, and fix a covariate xu,

u = 1, . . . , p. Recall that the risk set Rj is defined to be the set of all the subjects alive

at the time subject j fails. The Shoenfeld residual for the covariate Xu for the subject j

observed to fail is:

ruj = Xuj −
∑
i∈Rj

Xuicui

where cui are weights

cui =
exp(Xiβ)∑

k∈Rj exp(Xkβ)

Let us consider the coefficient for the covariate Xu to depend on time and have the form:

βu(t) = βu + γjg(t)

where γj is a coefficient and g(t) is a specific function of time. Grambsch and Therneau

provide a method of scaling, to form r∗uj so that

E(r∗uj) = γjg(t)

This suggests that a plot of of r∗uj versus tj may be used to asses the proportional hazards

assumption. Formal test procedures are based on a test statistic with χ2(1) and can be

combined for an overall test for all variables.
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APPENDIX B

(Partial) Likelihood Ratio Test

There are 3 main tests about the regression parameters β = β0, . . . , βp fo a Cox model:

-Wald test,

-Score test and

-(Partial) Likelihood ratio test.

Often, we want to test a hypothesis of the form:

H0 : β1 = β10

where the coefficient vector split into two vectors: β = (β1,β2). This is the case when

we want to compare a model (M2) with covariates {X0, X1, X2} and a model (M1) with

covariates {X0, X1}. The two models are nested, in the sense that the covariates for model

(M1) are included in the model (M2). To compare the two models, we can split the coefficient

vector

β = (β1,β2) into β1 = β2 and β2 = (β0, β1)

and perform the test H0 : β2 = 0. To test H0 we can use the Likelihood Ratio Test statistic:

XLR = 2(LL2 − LL1)

where LL2 and LL1 are the log of the maximum likelihoods calculated using models (M2)

and (M1). The test static XLR has an asymptotic χ2(1) distribution under H0. In general,

if the models (M2) and (M1) differ in q covariates, the test statistic XLR has an asymptotic

χ2(q).
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